题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
输入描述:
题目保证输入的数组中没有的相同的数字
数据范围:
对于%50的数据,size<=10^4
对于%75的数据,size<=10^5
对于%100的数据,size<=2*10^5
示例1
输入 1,2,3,4,5,6,7,0
输出 7
分析:
利用归并排序的思想,先把数组拆分成子数组,统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。时间复杂度O(nlog(n)),空间复杂度O(n)
class Solution {
public:
int InversePairs(vector<int> data) {
if(data.size()<=1) return 0;//如果少于等于1个元素,直接返回0
int* copy=new int[data.size()];
//初始化该数组,该数组作为存放临时排序的结果,最后要将排序的结果复制到原数组中
for(unsigned int i=0;i<data.size();i++)
copy[i]=0;
//调用递归函数求解结果
int count=InversePairCore(data,copy,0,data.size()-1);
delete[] copy;//删除临时数组
return count;
}
int InversePairCore(vector<int>& data,int*& copy,int start,int end)
{
if(start==end)
{
copy[start]=data[start];
return 0;
}
//将数组拆分成两部分
int mid=(start+end)/2;//这里使用的下标法,下面要用来计算逆序个数;
//分别计算左边部分和右边部分
int left=InversePairCore(data,copy,start,mid)%1000000007;
int right=InversePairCore(data,copy,mid+1,end)%1000000007;
//进行逆序计算
int i=mid;//前一个数组的最后一个下标
int j=end;//后一个数组的下标
int index=end;//辅助数组下标,从最后一个算起
int count=0;
while(i>=start && j>=mid+1)
{
if(data[i]>data[j])
{
copy[index--]=data[i--];
//统计长度
count+=j-mid;
if(count>=1000000007)//数值过大求余
count%=1000000007;
}
else
{
copy[index--]=data[j--];
}
}
for(;i>=start;--i)
{
copy[index--]=data[i];
}
for(;j>=mid+1;--j)
{
copy[index--]=data[j];
}
for(int i=start; i<=end; i++) {
data[i] = copy[i];
}
//返回最终的结果
return (count+left+right)%1000000007;
}
};