一、衡量标准:
1、熵:随机变量不确定性的度量
2、信息增益:特征X使类Y的不确定性减少的程度
举例计算:有如下数据,4个特征,1个结果(play)
计算类Y(打不打球)的熵值:0.94;
Outlook = sunny 的熵值计算: -2/5*log2(2/5)-3/5*log2(3/5) = 0.971;
3、信息增益率:
二、算法分类:
1、ID3;
2、C4.5;(解决ID3问题,考虑自身熵值,如ID):信息增益/自身熵值
3、CART;
三、补充
1、若特征是连续值:进行数据的二分(离散化)
四、剪枝:防止过拟合(在训练集上表现很好,但在测试集上表现不好)
1、预剪枝:边建立决策树边进行剪枝(实用);(sklearn 可视化)
2、后剪枝:建立完决策树再剪枝;