arm安装cuda9.0,tensorflow-gpu, jetson tx2安装Jetpack踩坑合集

在ARM架构的Jetson TX2上安装TensorFlow-GPU遇到挑战,官方未提供对应版本。尝试通过github源安装TensorFlow失败,因libstdc++更新问题受阻。转向NVIDIA Jetpack 3.3,包含CUDA、cuDNN等组件,但安装过程中遭遇网络配置困扰。解决方法包括修改PC上的网络配置文件和将所需CUDA包手动拷贝到Jetson TX2上完成安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为要在arm(aarch64)架构的linux环境中安装tensorflow-gpu,但是官方tf网上没有对应的版本,所以我们找了好久,找到一个其他人编译好的tensorflow on arm的github(https://github.com/lhelontra/tensorflow-on-arm),但是用pip install 完成之后 的时候出现

谷歌了一下,发现需要更新libstdc++,但是试过无数种办法,始终更新不了!!!

然后我们又在nvidia官网找了另一种方法:https://docs.nvidia.com/deeplearning/dgx/install-tf-jetsontx2/index.html

这个是nvidia专门为jetson tx2的板子出的tensorflow,直接用pip命令装就可以。

pip install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp33 tensorflow-gpu

但是有一个问题,它的前提是要安装Jetpack3.3,里面包含了cuda、cudnn、opencv等。然后问题来了,怎么安装J

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值