朴素贝叶斯

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
拉普拉斯平滑
这里写图片描述
朴素:特征条件独立
贝叶斯:基于贝叶斯定理

使用场景
文档分类,垃圾邮件分类

优点
1.生成式模型,通过计算概率来进行分类,可以用来处理多分类问题,
2.对小规模的数据表现很好,适合多分类任务,适合增量式训练,算法也比较简单
3.对缺失数据不太敏感,算法也比较简单,常用于文本分类
缺点
1.对输入数据的表达形式很敏感,
2.由于朴素贝叶斯的“朴素”特点,所以会带来一些准确率上的损失。需要一个比较容易解释,而且不同维度之间相关性较小的模型的时候。
3.需要计算先验概率,分类决策存在错误率。

阅读更多
个人分类: 数据挖掘
上一篇过拟合,欠拟合,偏差,误差,正则化
下一篇microServices微服务
想对作者说点什么? 我来说一句

朴素贝叶斯垃圾邮件代码

2018年06月22日 36KB 下载

没有更多推荐了,返回首页

关闭
关闭