- 博客(223)
- 收藏
- 关注
原创 2024级研究生《人工智能》课程考试说明
考试题共包括4道大题:第一大题:分类和回归-------------------------------------(8选1)第二大题:降维和聚类-------------------------------------(8选1)第三大题:API调用(课程中学习过的所有云平台)-----------(10选1)第四大题:深度学习项目-----------------------------------(10选1)
2025-04-14 14:41:10
575
原创 使用百度API进行图像修复
利用卷积神经网络学习图像特征,自动填补缺失部分。如百度采用生成对抗网络,生成器负责修复,判别器评估修复效果。通过大量样本训练,模型能精准识别图像纹理、颜色等信息,实现高精度修复,修复后的图像与原图高度融合。
2025-04-14 10:10:57
713
原创 使用SVM对心脏数据是否患病进行分类预测
本次我们使用的是UCI心脏病数据集,包含多种与心脏病相关的特征,如年龄、性别、血压、胆固醇水平等。数据集中的目标变量target有五个不同的类别,表示不同程度的心脏病。通过加载数据,我们将其分为特征集(X)和目标值(y),并进行清洗(将?替换为0)。支持向量机(SVM)是一种强大的分类算法,尤其适合处理高维数据。它的目标是寻找一个超平面,将不同类别的样本分开,并且最大化类别之间的间隔。在这篇文章中,我们使用SVC(支持向量分类)来实现心脏病数据的分类。在心脏病数据集中,类别不平衡问题较为严重。
2025-04-14 08:49:54
506
原创 基于yolov5实现对棉花个数的识别预测
为单阶段(One-stage)目标检测可进行实时检测在YOLOv5版本,作者做出了如下改进:该棉花成熟度检测数据集为个人标注的数据集,图片来源于农田实拍的棉花生长状况相片。数据集标注类别分别有:‘缺陷开裂棉花-不可采摘’, ‘棉花花朵-不可采摘’, ‘完全裂开-可采摘’, '部分开裂-不可采摘’数据集按照8:1:1比例划分为训练集、验证集、测试集。train:4238张 val:529张 test:530张。
2025-04-14 08:33:42
872
原创 基于支持向量回归(SVR)的空气质量预测
王浩,男,西安工程大学电子信息学院,2024级研究生研究方向:图像法识别羊绒羊毛电子邮件:3122496059@qq.com王晓睿,男,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:智能视觉检测与工业自动化技术电子邮件:3234002295@qq.comSVR(Support Vector Regression)是支持向量机(SVM)在回归问题上的应用,SVR通过最小化模型复杂度(‖w‖²)和控制ε-insensitive误差,在拟合精度与泛化能力之间取得平衡。
2025-04-11 19:31:21
994
原创 调用阿里云API实现身份证文字识别
姚元帅,男,西安工程大学电子信息学院,2024级研究生研究方向:机器视觉与人工智能电子邮件:3183969029@qq.com乔幸荣,女,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:模式识别与智能系统电子邮件:2029518801@qq.com1)早期阶段(20世纪50-70年代)这一阶段的API主要用于操作系统内部功能接口,供程序开发人员使用,功能简单,是软件开发的基础工具,为后续发展奠定基础。2)分布式时代(20世纪80年代-世纪末)
2025-04-11 15:31:06
975
原创 调用豆包智能绘图实现文生图
吕金典,男,西安工程大学电子信息学院,2024级研究生研究方向:水下定位与追踪电子邮件:2424863494@qq.com乔幸荣,女,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:模式识别与智能系统电子邮件:2029518801@qq.com先访问火山引擎官网,搜索API访问密钥,创建密钥(先创建账号,实名认证)进入之后,在左侧的栏目,找到人像人体,点击开通服务,然后点击接入文档,找到通用2.0文生图,点击SDK使用说明。
2025-04-11 15:20:09
1325
原创 使用层次聚类算法对wine数据集进行聚类分析
层次聚类是一种通过逐步合并或分裂数据对象来构建层次化聚类结构的经典算法。核心目标是生成一个树状结构,直观展示数据点之间的相似性关系。层次聚类分为两类:凝聚型层次聚类和分裂型层次聚类凝聚型层次聚类是一种自底向上的方法:每个数据点初始为一个簇,逐步合并最近的簇,直到所有数据点聚为一类。。分裂型层次聚类是一种自顶向下的方法:所有数据点初始为一类,逐步递归分割为更小的簇,直到每个点单独成簇。
2025-04-10 20:15:19
973
原创 调用百度api实现黑白图像上色
图像特征提取:首先,API 会使用卷积神经网络(CNN)等深度学习模型对输入的黑白图像进行特征提取。CNN通过多层卷积和池化操作,可以自动学习到图像中的各种特征,如边缘、纹理、形状等。这些特征是后续上色过程的重要依据。颜色预测模型:基于大量的彩色图像数据进行训练,建立颜色预测模型。该模型学习到黑白图像特征与对应的彩色信息之间的映射关系。在训练过程中,模型会不断调整参数,以最小化预测颜色与真实颜色之间的差异。当输入黑白图像时,模型会根据提取的特征预测出可能的颜色值。
2025-04-09 21:14:18
1022
原创 使用ResNet网络实现猫狗数据集分类
乔幸荣,女,西安工程大学电子信息学院,2024级研究生研究方向:模式识别与智能系统电子邮件:2029518801@qq.comResNet(Residual Network)是一种深度神经网络架构,它由微软研究院的何凯明(Kaiming He)等人在 2015 年提出,并在 ImageNet 竞赛中取得了惊人的成绩。ResNet 的核心思想是引入残差连接(Residual Connection),能有效地缓解深度神经网络训练中的梯度消失和梯度爆炸问题。
2025-04-09 15:16:35
1103
原创 调用豆包API实现图像内容识别
张丹丹,女,西安工程大学电子信息学院,2024级研究生研究方向:滑坡地质灾害监测电子邮件:1483540189@qq.com乔幸荣,女,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:模式识别与智能系统电子邮件:2029518801@qq.com。
2025-04-09 15:09:49
1544
原创 基于线性回归模型的汽车燃油效率预测
郝颖,女,西安工程大学电子信息学院,2024级研究生研究方向:机器视觉与人工智能电子邮件:1418293433@qq.com王晓睿,男,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:智能视觉检测与工业自动化技术电子邮件:3234002295@qq.com线性回归是一种用于建模自变量(输入变量)与因变量(输出变量)之间线性关系的统计方法。通过拟合一条直线来预测因变量的值,旨在最大程度地反映数据点的趋势。
2025-04-07 10:08:32
1257
1
原创 调用阿里云百炼的deepseek写一首诗,给出思考过程和赏析
DeepSeek-R1-Distill-Llama-70B 是深度求索(DeepSeek)公司基于 Llama 70B 模型开发的知识蒸馏版本,属于 R1 系列推理模型。它通过模型压缩技术将原始 70B 大模型的知识和推理能力迁移到更高效的架构中,同时保留了复杂任务处理能力,是当前开源生态中兼具性能与效率的典型代表。
2025-04-07 09:52:10
462
原创 基于DBSCAN的新闻文本聚类分析报告
核心对象:若样本点ε邻域内至少包含MinPts个样本,则该点为核心对象直接密度可达:若点q在p的ε邻域内,且p是核心对象,则q从p直接密度可达密度相连:存在对象链使得各对象间相互密度可达。
2025-04-07 09:12:08
955
原创 使用K-means算法对客户数据进行聚类分析
K-Means聚类算法即K均值算法,是一种迭代求解的聚类分析算法,是一个将数据集中在某些方面相似的数据成员进行分类组织的过程。选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化:• 定义:• K 值: 数据集中需要的质心数量。• 肘部方法: 用于确定数据集中簇数量的启发式方法。• 聚类: 因为它们具有相似性而聚集在一起的数据点的集合。• 质心: 代表簇中心的位置。• 为什么使用它• 客户细分 – 帮助根据共同特征将客户分成组。
2025-04-07 08:29:50
1781
原创 基于线性回归的广告与销售额预测
线性回归(Linear regression)是利用 回归方程(函数) 对 一个或多个自变量(特征值)和因变量(目标值)之间 关系进行建模的一种分析方式。是一种用于预测连续变量的经典机器学习算法。它通过拟合一条直线(或超平面)来描述自变量和因变量之间的线性关系。特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归。目标:是最小化预测值与实际值之间的误差。
2025-04-03 15:31:24
208
原创 【调用通义千问实现手写文字识别】
OCR是Optical Character Recognition(光学字符识别)的英文简称,它借助光学与计算机技术,将纸上印刷或手写文字读取并转化为计算机可接受、人类能理解的格式。图像预处理:在进行文字识别之前,要对带有噪声的文字图像进行处理。以应对纸张的厚薄、光洁度和印刷质量都会造成的文字畸变,断笔、粘连和污点。字符分割:对文档版面进行分析,首先对每一行进行行分割,再对每一行的文字单独分割。特征提取:根据字符的结构、笔画等信息,提取能够代表字符的特征。
2025-04-02 19:28:59
1149
原创 调用阿里云API实现运营商实名认证
杨旭,男,西安工程大学电子信息学院,2024级研究生研究方向:机器人抓取电子邮件:3156694657@qq.com乔幸荣,女,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:模式识别与智能系统电子邮件:2029518801@qq.com阿里云创立于2009年, 总部设在杭州,为阿里巴巴集团的数字技术与智能骨干业务,向全球客户提供全方位云服务,包括自有服务器、弹性计算、存储、网络安全、数据库和大数据等服务。
2025-04-01 14:48:30
598
原创 调用通义千问实现语音合成并将合成的音频通过扬声器播放
通义千问是阿里云推出的一个大型语言模型,基于先进的深度学习技术打造,能够理解和生成自然语言,在多轮对话、知识问答等多种应用场景中发挥重要作用。优点:它具有高度准确的语言理解能力,能精准把握用户问题和意图;支持多种语言输入输出,如中文、英文等;还具备出色的多轮对话支持能力,可依据上下文进行交互,提供自然流畅的对话体验。
2025-03-26 20:27:29
1426
原创 PCA降维算法--kaggle手写数字识别
PCA : 是一种常用的降维算法。通过线性变换将高维数据投影到低维空间,同时保留数据的主要特征,目标是减少数据的维度,同时尽可能保留数据的方差信息。(1) 来源:https://www.kaggle.com/c/digit-recognizer/data(2) 内容:包含 28x28 像素的手写数字图像,每个像素值为 0-255。(3) 规模:训练集:60,000 张图像。测试集:10,000 张图像。(4) 标签:每张图像对应一个数字标签(0-9)。
2025-03-26 20:22:15
1235
原创 使用DCGAN实现动漫图像生成
王晓睿,男,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:智能视觉检测与工业自动化技术电子邮件:3234002295@qq.com。
2025-03-26 16:24:21
1086
原创 基于MLP回归的鸢尾花花瓣长度预测
郝梦月,女,西安工程大学电子信息学院,2024级研究生研究方向:模式识别与智能系统电子邮件:479997163@qq.com王晓睿,男,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:智能视觉检测与工业自动化技术电子邮件:3234002295@qq.com多层感知器(MLP)是为了创建决策边界,把多个感知器合并成为一个更大的网络。MLP一般至少由三层组成,其中第一层为数据集的每个输入特征,都有一个节点,最后一层有每个类标签的结点。
2025-03-26 15:42:50
1165
原创 【调用腾讯智能云API实现文本翻译】
喻娥,女,西安工程大学电子信息学院,2024级研究生研究方向:机器视觉与人工智能电子邮件:1501437257@qq.com乔幸荣,女,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:模式识别与智能系统电子邮件:2029518801@qq.com腾讯智能云是腾讯公司旗下的云计算服务品牌,专注于为企业及开发者提供云计算、人工智能(AI)、大数据等综合数字化解决方案。
2025-03-25 16:51:11
1026
原创 调用阿里云API实现快递地址解析
陈莹莹,女,西安工程大学电子信息学院,2024级研究生研究方向:电力负荷预测电子邮件:2950275912@qq.com乔幸荣,女,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:模式识别与智能系统电子邮件:2029518801@qq.comAPI(应用程序接口,Application Programming Interface)是软件系统之间进行通信和数据交换的桥梁。它提供了一组定义和协议,允许不同的软件应用程序相互沟通,简化了软件开发和集成。
2025-03-25 14:54:09
637
原创 【调用百度智能云API实现图像分辨率提升】
原理:拉普拉斯算子是一种二阶微分算子,对图像中的灰度突变较为敏感,能够检测出图像中的边缘和细节。通过将拉普拉斯算子与图像进行卷积运算,得到图像的拉普拉斯变换图像,该图像中的边缘和细节部分会得到增强。然后将原始图像与拉普拉斯变换图像相加,就可以增强图像的清晰度。
2025-03-25 09:02:43
944
原创 基于随机森林回归预测葡萄酒质量
朱亚彬, 男 ,西安工程大学电子信息学院 , 2024级研究生研究方向:任务卸载与边缘计算电子邮件:2292036787@qq.com王晓睿,男,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:智能视觉检测与工业自动化技术电子邮件:3234002295@qq.com随机森林回归(Random Forest Regression)是一种基于集成学习的回归算法,通过组合多个决策树来提高预测的准确性和稳定性。名称数据集地址。
2025-03-22 21:23:36
990
原创 调用百度智能云API实现货币识别
卢美琳,女,西安工程大学电子信息学院,2024级研究生研究方向:机器视觉与人工智能电子邮件:2251081972@qq.com王子谦,男,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:机器视觉与人工智能电子邮件:1523018430@qq.com组合服务接口提供一个API接口,同时调用多个模型服务。支持图像识别的多个接口:通用物体和场景识别、图像单主体检测、动物识别、植物识别、果蔬识别、自定义菜品识别检索、菜品识别、红酒识别、地标识别、图像多主体检测等12。
2025-03-19 19:50:02
1188
原创 利用knn算法实现手写数字分类
王鹏飞,男,西安工程大学电子信息学院,2024级研究生研究方向:机器视觉与人工智能电子邮件:2018659934@QQ.com王海博, 男 , 西安工程大学电子信息学院, 2024级研究生, 张宏伟人工智能课题组研究方向:模式识别与人工智能电子邮件:1137460680@qq.com。
2025-03-19 17:23:12
967
原创 【论文笔记】RAQ-VAE: Rate-Adaptive Vector-Quantized Variational Autoencoder
吴思雨,女,西安工程大学电子信息学院,2023级研究生,张宏伟人工智能课题组研究方向:人工智能与机器视觉电子邮件:2879944563@qq.com原文链接:https://arxiv.org/html/2405.14222v1向量量化(VQ)是机器学习中用于学习离散表示的基本技术,在多个任务中取得了显著成果。VQ-VAE(向量量化变分自编码器)在保留变分自编码器(VAE)的编码器-解码器结构的基础上,提出了用于处理离散潜在表示的方法。通过VQ-VAE学习离散潜在变量模型在计算机视觉、音频、语音以及其他
2025-03-18 20:04:25
1269
1
原创 【论文笔记】Myriad: A Large Multimodal Model Applying Vision Experts for Industrial Anomaly Detection
笔记作者:乔幸荣,女,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:模式识别与智能系统电子邮件:2029518801@qq.com。
2025-03-18 17:28:52
1018
1
原创 调用腾讯智能云API实现人脸性别转换
祁佳程,男,西安工程大学电子信息学院,2024级研究生研究方向:机器视觉与人工智能电子邮件:1825627843@qq.com乔幸荣,女,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:模式识别与智能系统电子邮件:2029518801@qq.com1)早期阶段(20世纪50-70年代)这一阶段的API主要用于操作系统内部功能接口,供程序开发人员使用,功能简单,是软件开发的基础工具,为后续发展奠定基础。2)分布式时代(20世纪80年代-世纪末)
2025-03-18 15:31:00
1213
原创 通过PCA实现对糖尿病数据的降维处理
丁怡锡,男,西安工程大学电子信息学院,2024级研究生研究方向:机器视觉与人工智能电子邮件:2214983431@qq.com王晓睿,男,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组研究方向:智能视觉检测与工业自动化技术电子邮件:3234002295@qq.com主成分分析(PCA):是一种常用的降维技术,通过线性变换将高维数据映射到低维空间,同时保留数据的主要特征。PCA的核心思想是找到数据中方差最大的方向(主成分),并将数据投影到这些方向上,从而实现降维。目标。
2025-03-17 09:44:34
800
原创 【论文笔记】E-TD3:A Deep Reinforcement Learning-based Autonomous Flight Decision-Making Method for UAV
随着无人机在低空空域应用的不断拓展,对其自主、智能机动和自适应能力提出了更高的要求。为克服这一挑战,提出了一种基于深度强化学习的端到端无人机飞行决策方法,为无人机安全稳定规避环境障碍物威胁和跟踪目标的使命提供了动态规划方案。该方法基于双延迟深度确定性策略梯度(TD3)框架,引入门控递归单元。为了进一步提高算法的探索能力和样本效率,将专家经验融入到强化学习中,提出了ETD3算法。通过重构体验回放缓冲区,设计了混合样本采集机制,动态调整演示数据的比例。最后,在AirSim平台上进行了实验验证。
2025-03-10 17:07:13
1118
1
转载 【论文笔记】FINE-GRAINED ABNORMALITY PROMPT LEARNING FOR ZERO-SHOT ANOMALY DETECTION
目前的零样本异常检测方法在促使大型预先训练的视觉语言模型在不使用任何特定于数据集的训练或演示的情况下检测目标数据集中的异常方面取得了显著的成功。然而,这些方法通常集中在制作/学习提示上,这些提示只捕捉异常的粗粒度语义,因此,它们在识别具有独特视觉外观的各种异常细节方面的能力有限。为了解决这一限制,我们提出FAPrompt,这是一个新颖的框架,旨在学习细粒度异常提示以获得更准确的零样本异常检测能力。
2025-03-09 23:36:55
114
1
转载 [论文笔记]大规模多局域网的分段联邦学习入侵检测
网络安全问题的传统方法通常在特定类型的攻击发生后保护用户免受攻击。此外,最近的网络攻击模式往往是多变的,这增加了它们的不可预测性。另一方面,机器学习作为一种新的入侵检测方法,正受到越来越多的关注。此外,通过共享本地培训数据,集中式学习方法已被证明可以提高模型的性能。本研究提出了一种分段联邦学习,不同于传统联邦学习模型中基于单个全局模型的协作学习,它保留了多个全局模型,允许每一段参与者单独进行协作学习,并动态地重新安排参与者的分段。此外,这些多个全局模型彼此交互以更新参数,从而适应于各种参与者的局域网。
2025-03-09 23:30:38
146
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人