1.作者介绍
刘泽宇,男,西安工程大学电子信息学院,2024级研究生
研究方向:机器视觉与人工智能
电子邮件:2625697054@qq.com
2. DeepSeek-R1-Distill-Llama-70B
DeepSeek-R1-Distill-Llama-70B 是深度求索(DeepSeek)公司基于 Llama 70B 模型开发的知识蒸馏版本,属于 R1 系列推理模型。它通过模型压缩技术将原始 70B 大模型的知识和推理能力迁移到更高效的架构中,同时保留了复杂任务处理能力,是当前开源生态中兼具性能与效率的典型代表。
3.实现过程与结果分析
3.1 获取API-KEY
-
访问阿里云百炼页面,注册并登录您的阿里云账号。
-
选择开通“百炼大模型推理”服务,并等待短信 确认服务已成功开通。
-
从右上角的小人图标进入个人中心 -> API-KEY ->创建新的API-KEY。请妥善保存生成的API Key。
3.2 Deepseek模型
1.在左侧列表中选择“模型广场”,找到“Deepseek”类别下的“DeepSeek-R1-Distill-Llama-70B”模型,选择该模型对应的“API调用”按钮。
2.点击“API示例”以获取相关代码
3.3 代码实现
1.安装需要的库:在终端输入以下代码
pip install --upgrade openai
- 在 {‘role’: ‘user’, ‘content’: ‘写一首诗’}中输入所需指令
3.在 api_key=———— 中输入自己的API KEY
3.4 实验代码
import os
from openai import OpenAI
client = OpenAI(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"), # 如何获取API Key:https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"
)
completion = client.chat.completions.create(
model="deepseek-r1", # 此处以 deepseek-r1 为例,可按需更换模型名称。
messages=[
{'role': 'user', 'content': '写一首诗 '}
]
)
# 通过reasoning_content字段打印思考过程
print("思考过程:")
print(completion.choices[0].message.reasoning_content)
# 通过content字段打印最终答案
print("最终答案:")
print(completion.choices[0].message.content)
3.5 实验结果
3.6 问题分析
在最开始跑的时候用的是py36环境,在下载完openai库之后出现以下问题。
发现是所下载的openai版本应大于1.0.0,若Python版本低于3.7.0则无法下载相应openai版本,需切换Python版本。