最近看了一下有关于线段树的博客:
首先是这个题目:buy ticket
题目大意是:一些人来排队买票,第i个人想站在第x[i]人的后面,他的val是y[i],问最终结果是一个怎么样的val序列
dalao的代码有些奇特,解释也很简单,从main函数里面看,大概是用线段树存他的最终位置的位置,一开始看有几个疑问:
首先,为什么他要用线段树存区间长度。
第二,为什么找到了这个点所在的位置之后又把区间长度更新为0。
后来,又查阅了很多,发现线段树中存放的是空位置的个数,这样以上两个疑问得以解释,若空位置个数>=pos+1,查阅左孩子,反之查阅右孩子,最后将他放到恰当的位置。
总结一下这个问题有点类似于线段树处理插入问题。处理方法就是最后一个先进(因为最后一个元素一定能得到他想要的位置)然后用线段树存放空位置的个数,以此解决。
接下来又看到一个题目:
谁能拿到最多的糖果。
题目的大意是这样的:一圈孩子,编号为k的孩子先出列,然后对于他手上的数字,若为正数,则让左手边第数字个人出列,反之让右手边第数字个人出列,并拿到出列次序的约数个数个糖果。
这个题目看似是上面那个题目的逆运算(上面的那个题目进行的是插入的操作,下面的这个题目进行的是删除的操作)但是这两个题目的代码如出一辙,都有这样一段:
- int query(int pos,int r)
- {
- tree[r].cnt--;
- if(tree[r].left==tree[r].right) return tree[r].left;
- else
- {
- if(pos<tree[r*2].cnt) return query(pos,r*2);
- else return query(pos-tree[r*2].cnt,r*2+1);
- }
- }
这段代码在第一个题目中的意思是插入人到pos位置,第二个题目中则是将左手(右手)第pos个人删除。
细细思考之下,这两个题目正是同一种操作,只不过第一个题是第二个题目的逆向思维,但是无论怎么运行,我暂时还是想不明白为啥这个代码的运行结果会有那种含义,题解上的解释少之又少,朝着我自己思维的方式思考又很难得到相应的结果,于是姑且将这段代码记作是删除元素的一个模板。