machine learning
youngAntitheist
这个作者很懒,什么都没留下…
展开
-
EM算法 python初探
EM算法在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算:第一步是计算期望(E),利用概率模型参数的现有估计值,计算隐藏变量的期望;...原创 2018-03-26 21:13:11 · 648 阅读 · 2 评论 -
Kmeans算法 python实现
K-Means算法简介:事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,知道质心不再改变,最终就确定了每个样本所属的类别以及每个类的质心。 总的来说,算法很简单,下面是python的简单实现:import numpy as np ...原创 2018-03-26 21:27:13 · 427 阅读 · 0 评论 -
isomap算法 python实现
isomap算法主要流程: 1:构建邻接图G:基于输入空间X中流形G上的的邻近点对i,j之间的欧式距离dx (i,j),选取每个样本点距离最近的K个点(K-Isomap)或在样本点选定半径为常数ε的圆内所有点为该样本点的近邻点,将这些邻近点用边连接,将流形G构建为一个反映邻近关系的带权流通图G; 2:计算所有点对之间的最短路径:通过计算邻接图G上任意两点之间的最短路径逼近流形上的测地距离...原创 2018-03-26 21:34:07 · 7517 阅读 · 3 评论 -
Adaboost 算法实现
Adaboost简介:Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。 下面使用sklearn库简单体验一下,使用自带数据集iris: from sklearn.model_selection import cross_val_score from sklearn.data...原创 2018-03-26 21:41:44 · 328 阅读 · 0 评论 -
关于SVM算法 python实现
SVM简介 SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。 SVM的主要思想可以概括为两点: 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空...原创 2018-03-26 22:08:29 · 1274 阅读 · 0 评论 -
基于yale人脸库的人脸图像检测
一.嵌入式特征选择:将特征选择方法和学习训练过程融为一体。两者同在一个优化过程中完成。在学习器训练时自动进行特征选择。给定训练集,考虑线性回归模型,以平方误差为损失函数,则优化目标为: 当样本特征较多,样本数量较少时,很容易过拟合。若采用L1正则化,则有: 二. 人脸图片处理读入训练图片,将每张人脸图片信息存储为一维矩阵(1*10304),方便计算。 三.稀疏表示假设我们用一个M*N的矩阵表...原创 2018-04-15 17:06:43 · 3922 阅读 · 1 评论