边权三角形(最大\小路径权值和)

本文介绍了如何使用动态规划方法解决从数字三角形顶部到底部的路径问题,目标是找到使得路径上数字总和最大或最小的路径。通过样例输入和输出展示了算法的应用,并给出了修改核心代码以求解最小边权和的提示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如图所示,展出了一个数字三角形。  请编一个程序计算从顶至底的某处的一条路径,使该路径所经过的数字的总和最大。 

每一步可沿左斜线向下或右斜线向下走; 

1< 三角形行数< 25; 

三角形中的数字为整数< 1000;

输入第一行为N,表示有N行后面N行表示三角形每条路的路径权

输出路径所经过的数字的总和最大的答案

样例输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
样例输出
30
public class RectangleNumbers {

	public static void main(String[] args) throws FileNotFoundException {
		Scanner sc = new Scanner(System.in);
		int num = sc.nextInt();
		int[][] dp = new int[num][num];
		for (int i = 0; i < num; i++) {
			for (int j = 0; j <= i; j++) {
				dp[i][j] = sc.nextInt();
			}
		}
		sc.close();
		solve(dp);
		System.out.println(dp[0][0]);
	}

	public static void solve(int[][] dp) {
		for (int i = dp.length-2; i >= 0; i--) {
			for (int j = 0; j <= i; j++) {
				dp[i][j] += Math.max(dp[i+1][j], dp[i+1][j+1]);//核心代码
			}
		}
	}
} 


类似的,为了得到计算最小边权和的算法实现,我们可以将核心代码改写为:

				dp[i][j] += Math.min(dp[i+1][j], dp[i+1][j+1]);

样例输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
样例输出
17

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值