Codeforces Round #429 (Div. 2) 841B Godsend(思维)

37 篇文章 0 订阅
32 篇文章 0 订阅
本文介绍了一种简单的博弈论游戏算法,通过分析游戏中的数字总和及奇偶性来预测哪一方将赢得游戏。该算法指出,如果数字总和为奇数,则第一玩家必胜;若总和为偶数且存在至少一个奇数,则第一玩家同样获胜;反之,则第二玩家获胜。
摘要由CSDN通过智能技术生成

首先判断是否总和为奇数,如果是则直接一号赢.
如果是偶数,则有两种,如存在奇数(那么一定是偶数个),那么也是一号一定赢,为什么呢,我们可以想象,一号每一次拿一个奇数,都可以带走非常非常多的偶数,那么偶数一定是不够用的.如果没有奇数,那么就二号赢咯.

/*  xzppp  */
#include <bits/stdc++.h>
using namespace std;
#define FFF freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#define lson MAXN,m,rt<<1
#define rson m+1,r,rt<<1|1
#define MP make_pair
#define PB push_back
typedef long long  LL;
typedef unsigned long long ULL;
const int MAXN = 1000000+17;
const int INF = 0x7fffffff;
const int MOD = 1e9+7;
LL a[MAXN];
int main()
{
    //FFF
    int n;
    cin>>n;
    bool exi = false;
    LL sum = 0;
    for (int i = 0; i < n; ++i)
    {
        scanf("%lld",a+i);
        if(!exi&&a[i]%2!=0)
            exi = true;
        sum += a[i];
    }
    if(sum&1)
        cout<<"First"<<endl;
        else
        {
            if(exi)
                cout<<"First"<<endl;
            else
                cout<<"Second"<<endl;
        }
    return  0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值