tensorflow2(GPU)显卡版安装

准备工作

硬件:
一张算力3.5以上的NVIDIA显卡
查询链接:link.
软件:
Miniconda3
pycharm
NVIDIA显卡驱动
30系列以前:
cuda_10.1
cudnn-10.1-v7.6
tensorflow2.2
30系列:
cuda_11
cudnn-11-v8.0
tensorflow2.4

软件安装(以30系显卡为例)

1.安装NVIDIA显卡驱动>456.43
下载链接:link.
打开控制面板查询当前显卡版本
2.安装cuda_11.1
下载链接:link.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.安装cudnn-11.1-v8.0
下载链接:link.
解压cudnn-11.1-windows-x64-v8.0.4.30压缩包里面的文件,放到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1目录下
在这里插入图片描述

4.安装Miniconda3
下载链接:link.
在这里插入图片描述
5.安装tensorflow-gpu==2.4
打开Anaconda Prompt (Miniconda3),创建虚拟环境
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

依次输入:
conda create -n 环境名 python==(python版本)
conda activate 环境名
pip install tensorflow-gpu==2.4 -i https://pypi.doubanio.com/simple

6.安装pycharm
下载链接:link.
在这里插入图片描述

在这里插入图片描述

验证安装效果

输入如下代码:

import tensorflow as tf

tf.config.list_physical_devices('GPU')

运行窗口显示如下,所有的动态链接库都成功加载,表明软件安装成功,可以正常使用了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值