
clickhouse
逃跑的沙丁鱼
奋力起飞的菜鸟
展开
-
clickhouse分区操作实践
ClickHouse支持PARTITION BY子句,在建表时可以指定按照任意合法表达式进行数据分区操作,比如通过toYYYYMM()将数据按月进行分区、toMonday()将数据按照周几进行分区、对Enum类型的列直接每种取值作为一个分区等。数据Partition在ClickHouse中主要有两方面应用:在partition key上进行分区裁剪,只查询必要的数据。灵活的partition expression设置,使得可以根据SQL Pattern进行分区设置,最大化的贴合业务特点。对part原创 2020-12-09 00:00:01 · 15300 阅读 · 1 评论 -
clickhouse表引擎-合并树系列
Clickhouse 中最强大的表引擎当属MergeTree(合并树)引擎及该系列(*MergeTree)中的其他引擎。MergeTree系列的引擎被设计用于插入极大量的数据到一张表当中。数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合并。相比在插入时不断修改(重写)已存储的数据,这种策略会高效很多。本文结合官网,亲测实例追踪原理和规则,提出使用场景和注意事项原创 2020-11-10 20:19:25 · 4266 阅读 · 1 评论 -
clickhouse表引擎-日志引擎系列
这些引擎是为了需要写入许多小数据量(少于一百万行)的表的场景而开发的。面对的数据查询场景也比较简单,并且往往是一次写入多次查询,则日志家族系列的表引擎将会是一种不错的选择。TinyLog:不支持并发读取数据文件,查询性能较差;格式简单,适合用来暂存中间数据。StripLog:支持并发读取数据文件,查询性能比TinyLog好;将所有列存储在同一个大文件中,减少了文件个数。Log:支持并发读取数据文件,查询性能比TinyLog好;每个列会单独存储在一个独立文件中。原创 2020-11-10 16:13:25 · 753 阅读 · 0 评论 -
clickhouse 数据库引擎
您使用的所有表都是由数据库引擎所提供的默认情况下,ClickHouse使用自己的数据库引擎,该引擎提供可配置的表引擎和所有支持的SQL语法.除此之外,您还可以选择使用以下的数据库引擎:MySQL原创 2020-11-06 20:44:45 · 3562 阅读 · 0 评论 -
docker 安装clickhouse-server+clickhouse-client+Tabix
ClickHouse是一个由俄罗斯最大的搜索公司Yandex开源的列式数据库(DBMS),主要用于在线分析处理查询(OLAP),于2016年开源,采用C++开发。本文主要介绍相关组件使用docker进行安装,包括clickhouse-server ,clickhouse-client,clickhouse-tabix-web-client,以及安装过程中遇到的问题和解决方法原创 2020-11-06 14:50:37 · 7571 阅读 · 4 评论