9.变态跳台阶

题目

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

解题思路

这个题初看比较变态,先写出公式。
f ( n ) f(n) f(n)表示跳上n级台阶的跳法,
f ( n ) = f ( n − 1 ) + f ( n − 2 ) + ⋯ + f ( 1 ) + 1 f(n) = f(n-1)+f(n-2)+\cdots +f(1)+1 f(n)=f(n1)+f(n2)++f(1)+1,加一表示一步登顶。
忽然中学时代的某种记忆开始苏醒,
写出 f ( n − 1 ) = f ( n − 2 ) + f ( n − 2 ) + ⋯ + f ( 1 ) + 1 f(n-1) = f(n-2)+f(n-2)+\cdots +f(1)+1 f(n1)=f(n2)+f(n2)++f(1)+1
两式相减得 f ( n ) = 2 f ( n − 1 ) f(n)=2f(n-1) f(n)=2f(n1)

代码

class Solution {
public:
    int jumpFloorII(int number) {
        int fNMinusOne = 1;
        int fN = 1;
        
        for ( int i = 2; i <= number; ++i ) {
            fN = 2 * fNMinusOne;
            fNMinusOne = fN;
        }
        
        return fN;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值