题目
统计一个数字在排序数组中出现的次数。
思路
- 遍历一遍就可以算出来,O(n)的复杂度,这么做没啥意思。
- 比O(n)更快的就是O(lgn)了,这一看就想到二分查找。
- 查找该数字在数组中第一次和最后一次出现的位置,然后计算这中间的个数。
- 一个需要注意的地方是,中间值的计算方式,正确选择避免循环跳不出去。
- mid = (left+right) >>1 和 mid = (left+right+1)>>1。
- 对于奇数个数,这两者无区别。对于偶数个数,前者表示中间两个元素中靠左的数,后者表示靠后的数。
- 在寻找第一次出现的位置时。
- 当mid处为该数字时,使right = mid。
- 当mid处大于该数时,right = mid - 1。
- 当mid处小于该数时,left = mid + 1。
- 寻找中位数的方法用mid = (left+right) >>1。即挑选中间两个数左边的那个作为中位数。原因如下:
- 在寻找最后一次出现的位置时,当mid为该数字时,使left = mid。寻找中位数的方法用mid = (left+right+1)>>1。依照上图的思想同理可以分析。
代码
class Solution {
public:
int GetNumberOfK(vector<int> data ,int k) {
if ( data.size() == 0 ) return 0;
int res = 0;
int firstK = getFirstK( data, 0, data.size()-1, k );
if ( firstK != -1 ) {
int lastK = getLastK( data, 0, data.size()-1, k );
res = lastK - firstK + 1;
}
return res;
}
int getFirstK( vector<int>& data, int left, int right, int k ) {
while ( left < right ) {
int mid = ( left + right ) >> 1;
if ( data[mid] == k )
right = mid;
else if ( data[mid] > k )
right = mid - 1;
else if ( data[mid] < k )
left = mid + 1;
}
return data[left] == k ? left : -1;
}
int getLastK( vector<int>& data, int left, int right, int k ) {
while ( left < right ) {
int mid = ( left + right + 1 ) >> 1;
if ( data[mid] == k )
left = mid;
else if ( data[mid] > k )
right = mid - 1;
else if ( data[mid] < k )
left = mid + 1;
}
return data[left] == k ? left : -1;
}
};