题目
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 True ;不是,则返回 False 。
思考
看到这道题,第一时间不能确定的是,循环的终止条件。因为计算个位的平方和是简单的,知道了怎么停下来,这道题就解完了。看了下题解,主要的思想是,证明求平方和的这个过程,是循环的,当发现循环的时候,就可以终止程序的循环,而且如果平方和为1的时候,后面的平方和也都为1,所以也是进入了循环。
当数字很大的时候,各个位的数的平方和,也只不过是一些一位的数字和,肯定会比原来的数字小,这样就保证了,位平方和不会无限的变大。总会在某一时刻,位平方和在之前出现过。只要有两个数相同了,那么就构成了一个循环,如果数字不为1,那么再没有可能成为1。
如果寻找两个数字相同呢?一个方法是创建一个集合,每次计算完看看集合中是否出现过,没有出现过就放入集合,直到出现。另一个方法是,将每一次的平方和当成链表的一个节点,假想有快慢指针。快指针每次先计算出平方和
n
1
n_1
n1,再计算出
n
1
n_1
n1的平方和
n
2
n_2
n2,慢指针每次往前指向一个数。想象如果该链表有个环,意思就是快指针计算出一个数之前算出来过,那么当快慢指针都进入环的时候,快指针每次走两步,慢指针每次走一步,那么快慢指针每次都会算短1的距离,总会相遇。相遇时快慢指针指向的数相同,这就代表该数是重复的,从该数走过的一圈就是一个循环。
代码
class Solution {
public:
bool isHappy(int n) {
if ( n == 0 ) return false;
int fast = 0, slow = 0;
vector<int> arr;
arr.push_back( n );
do {
fast += 2;
slow += 1;
sumOfSquare( n );
arr.push_back( n );
sumOfSquare( n );
arr.push_back( n );
} while ( arr[fast] != arr[slow] );
if ( arr[fast] == 1 ) return true;
return false;
}
void sumOfSquare( int& n ) {
int sum = 0;
int mod = 0;
while ( n ) {
mod = n % 10;
n /= 10;
sum += mod * mod;
}
n = sum;
return;
}
};