LeetCode Day22 | 235. 二叉搜索树的最近公共祖先、701. 二叉搜索树中的插入操作、450. 删除二叉搜索树中的节点

本文介绍了如何在二叉搜索树中找到两个节点的最近公共祖先,以及如何进行插入和删除节点的操作。对于最近公共祖先,利用二叉搜索树的有序性可以简化问题,通过递归或迭代方法解决。在插入操作中,通过递归将新节点添加到适当位置。而删除节点则要考虑五种不同情况,包括叶子节点和非叶子节点的删除处理。
摘要由CSDN通过智能技术生成

235. 二叉搜索树的最近公共祖先

难度:☆3

本题利用二叉搜索树的有序性,不需要遍历整棵树,且不需要考虑 pq 的大小关系。本题没有中间节点的处理逻辑,只有左右节点的,所以不区分前中后序遍历。

从根节点向下遍历,分三种情况讨论:(1)当前节点比 pq 都大;(2)当前节点比 pq 都小;(3)当前节点介于 pq 之间。

一个关键思维难点需要考虑:

引理:从根节点向下遍历,出现的第一个介于 pq 的值之间的节点 m 一定是 pq 的最近公共祖先。
证明:从根节点向下遍历,当节点 m 是第一个介于 pq 的值之间的节点时,pq 分别在这个节点 m 的左右子树上。若从这个节点 m 出发,向左或向右遍历到孩子节点 n。那么 pq 中必有一个不在新节点 n 的左右子树上。因此,节点 m 一定是 pq 的最近公共祖先。

a. 递归法

  1. 详细版。
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if not root:
            return None
        if root.val > p.val and root.val > q.val:
            leftSubTree = self.lowestCommonAncestor(root.left, p, q)  # 左
            if leftSubTree:
                return leftSubTree
        elif root.val < p.val and root.val < q.val:
            rightSubTree = self.lowestCommonAncestor(root.right, p, q)  # 右
            if rightSubTree:
                return rightSubTree
        else:
            return root  # 找到结果
  1. 精简左右节点的逻辑。
        if root.val > p.val and root.val > q.val:
            return self.lowestCommonAncestor(root.left, p, q)  # 左
        elif root.val < p.val and root.val < q.val:
            return self.lowestCommonAncestor(root.right, p, q)  # 右
  1. 不利用二叉搜索树的特性,用二叉树的通用解法(后序遍历)也可以通过,但要遍历整棵树。
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if not root or root == p or root == q:
            return root
        leftSubTree = self.lowestCommonAncestor(root.left, p, q)  # 左
        rightSubTree = self.lowestCommonAncestor(root.right, p, q)  # 右
        if leftSubTree and rightSubTree:  # 中
            return root  # 找到结果
        elif leftSubTree:
            return leftSubTree
        else:
            return rightSubTree

b. 迭代法

迭代法利用二叉搜索树的有序性,非常简洁。

class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        while root:
            if root.val > p.val and root.val > q.val:  # 左
                root = root.left
            elif root.val < p.val and root.val < q.val:  # 右
                root = root.right
            else:
                return root  # 找到结果

701. 二叉搜索树中的插入操作

难度:☆2

根据题意,新节点都可以作为叶子节点插入,不需要考虑“可能存在多种有效的插入方式”,因为二叉树原有结构不用更改,增添叶子即可。

a. 递归法

递归法的实现有多种。遍历路线是从根节点到叶子节点的一条线。

  1. 借助无返回值的成员函数。
class Solution:
    def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
        if not root:
            return TreeNode(val)
        self.traversal(root, val)
        return root
    
    def traversal(self, node: Optional[TreeNode], val: int) -> None:
        if val < node.val and node.left:  # 左
            self.insertIntoBST(node.left, val)
        elif val > node.val and node.right:  # 右
            self.insertIntoBST(node.right, val)
        elif val < node.val and not node.left:  # 左
            node.left = TreeNode(val)
            return
        elif val > node.val and not node.right:  # 右
            node.right = TreeNode(val)
            return
  1. 精简版,有返回值的原函数(写法 1)。关键:遇到叶子节点的时候,return TreeNode(val),可以在叶子节点的下面插入新节点——递归调用返回上一级,将新节点赋给 root.leftroot.right
class Solution:
    def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
        if not root:
            return TreeNode(val)
        if val < root.val:  # 左
            root.left = self.insertIntoBST(root.left, val)
        elif val > root.val:  # 右
            root.right = self.insertIntoBST(root.right, val)
        return root
  1. 有返回值的原函数(写法 2)。
class Solution:
    def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
        newNode = TreeNode(val)
        if not root:
            return newNode
        if not root.left and val < root.val:  # 左
            root.left = newNode
        elif not root.right and val > root.val:  # 右
            root.right = newNode
        elif val < root.val:  # 左
            self.insertIntoBST(root.left, val)
        elif val > root.val:  # 右
            self.insertIntoBST(root.right, val)
        return root
  1. 有返回值的原函数(写法 3)。
class Solution:
    def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
        if not root:
            return TreeNode(val)
        if val < root.val:  # 左
            if not root.left:
                root.left = TreeNode(val)
            else:
                self.insertIntoBST(root.left, val)
        if val > root.val:  # 右
            if not root.right:
                root.right = TreeNode(val)
            else:
                self.insertIntoBST(root.right, val)
        return root

b. 迭代法:双指针

迭代法遍历的过程中,需要记录当前遍历节点的父节点,这样才能做插入节点的操作。用到记录 precur 两个指针的技巧。

class Solution:
    def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
        if not root:
            return TreeNode(val)
        cur = root
        while cur:  # 用循环不断寻找新节点的pre
            pre = cur  # 首先保存当前非空节点作为下一次迭代的父节点
            if val < cur.val:
                cur = cur.left
            elif val > cur.val:
                cur = cur.right
        # 跳出循环,新节点的pre已经找到,连接新节点和pre
        if val < pre.val:
            pre.left = TreeNode(val)
        elif val > pre.val:
            pre.right = TreeNode(val)
        return root

450. 删除二叉搜索树中的节点

难度:☆4

a. 递归法

在递归函数的终止条件部分,有以下五种情况。

  1. 第一种情况:没找到要删除的节点,遍历到空节点直接返回。
  2. 找到要删除的节点:
    第二种情况:删除节点的左右孩子都为空(叶子节点),直接删除节点,返回空为根节点。
    第三种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点。
    第四种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点。
    第五种情况:删除节点的左右孩子都不为空,则将删除节点的左子树根节点(左孩子)放到删除节点的右子树最左侧节点的左孩子上,返回删除节点的右孩子为新的根节点。

第五种情况最复杂,改变树的结构是把左子树挂到右子树的最左侧,再删除根节点。用 cur 指针寻找右子树的最左侧节点。

递归调用,把新的节点返回给上一层,上一层就用 root.left 或者 root.right 接住。

class Solution:
    def deleteNode(self, root: Optional[TreeNode], key: int) -> Optional[TreeNode]:
        if not root:  # 没找到要删除的节点
            return None
        if key == root.val:  # 找到要删除的节点
            if not root.left and not root.right:  # 叶子节点,左空右空
                return None
            elif root.left and not root.right:  # 左不空右空
                return root.left
            elif not root.left and root.right:  # 左空右不空
                return root.right
            else:  # 左不空右不空
                cur = root.right
                while cur.left:
                    cur = cur.left
                cur.left = root.left
                return root.right
        if key < root.val:
            root.left = self.deleteNode(root.left, key)
        if key > root.val:
            root.right = self.deleteNode(root.right, key)
        return root
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值