235. 二叉搜索树的最近公共祖先
难度:☆3
本题利用二叉搜索树的有序性,不需要遍历整棵树,且不需要考虑 p
、q
的大小关系。本题没有中间节点的处理逻辑,只有左右节点的,所以不区分前中后序遍历。
从根节点向下遍历,分三种情况讨论:(1)当前节点比 p
、q
都大;(2)当前节点比 p
、q
都小;(3)当前节点介于 p
、q
之间。
一个关键思维难点需要考虑:
引理:从根节点向下遍历,出现的第一个介于
p
、q
的值之间的节点m
一定是p
、q
的最近公共祖先。
证明:从根节点向下遍历,当节点m
是第一个介于p
、q
的值之间的节点时,p
、q
分别在这个节点m
的左右子树上。若从这个节点m
出发,向左或向右遍历到孩子节点n
。那么p
和q
中必有一个不在新节点n
的左右子树上。因此,节点m
一定是p
、q
的最近公共祖先。
a. 递归法
- 详细版。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if not root:
return None
if root.val > p.val and root.val > q.val:
leftSubTree = self.lowestCommonAncestor(root.left, p, q) # 左
if leftSubTree:
return leftSubTree
elif root.val < p.val and root.val < q.val:
rightSubTree = self.lowestCommonAncestor(root.right, p, q) # 右
if rightSubTree:
return rightSubTree
else:
return root # 找到结果
- 精简左右节点的逻辑。
if root.val > p.val and root.val > q.val:
return self.lowestCommonAncestor(root.left, p, q) # 左
elif root.val < p.val and root.val < q.val:
return self.lowestCommonAncestor(root.right, p, q) # 右
- 不利用二叉搜索树的特性,用二叉树的通用解法(后序遍历)也可以通过,但要遍历整棵树。
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if not root or root == p or root == q:
return root
leftSubTree = self.lowestCommonAncestor(root.left, p, q) # 左
rightSubTree = self.lowestCommonAncestor(root.right, p, q) # 右
if leftSubTree and rightSubTree: # 中
return root # 找到结果
elif leftSubTree:
return leftSubTree
else:
return rightSubTree
b. 迭代法
迭代法利用二叉搜索树的有序性,非常简洁。
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
while root:
if root.val > p.val and root.val > q.val: # 左
root = root.left
elif root.val < p.val and root.val < q.val: # 右
root = root.right
else:
return root # 找到结果
701. 二叉搜索树中的插入操作
难度:☆2
根据题意,新节点都可以作为叶子节点插入,不需要考虑“可能存在多种有效的插入方式”,因为二叉树原有结构不用更改,增添叶子即可。
a. 递归法
递归法的实现有多种。遍历路线是从根节点到叶子节点的一条线。
- 借助无返回值的成员函数。
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if not root:
return TreeNode(val)
self.traversal(root, val)
return root
def traversal(self, node: Optional[TreeNode], val: int) -> None:
if val < node.val and node.left: # 左
self.insertIntoBST(node.left, val)
elif val > node.val and node.right: # 右
self.insertIntoBST(node.right, val)
elif val < node.val and not node.left: # 左
node.left = TreeNode(val)
return
elif val > node.val and not node.right: # 右
node.right = TreeNode(val)
return
- 精简版,有返回值的原函数(写法 1)。关键:遇到叶子节点的时候,
return TreeNode(val)
,可以在叶子节点的下面插入新节点——递归调用返回上一级,将新节点赋给root.left
或root.right
。
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if not root:
return TreeNode(val)
if val < root.val: # 左
root.left = self.insertIntoBST(root.left, val)
elif val > root.val: # 右
root.right = self.insertIntoBST(root.right, val)
return root
- 有返回值的原函数(写法 2)。
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
newNode = TreeNode(val)
if not root:
return newNode
if not root.left and val < root.val: # 左
root.left = newNode
elif not root.right and val > root.val: # 右
root.right = newNode
elif val < root.val: # 左
self.insertIntoBST(root.left, val)
elif val > root.val: # 右
self.insertIntoBST(root.right, val)
return root
- 有返回值的原函数(写法 3)。
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if not root:
return TreeNode(val)
if val < root.val: # 左
if not root.left:
root.left = TreeNode(val)
else:
self.insertIntoBST(root.left, val)
if val > root.val: # 右
if not root.right:
root.right = TreeNode(val)
else:
self.insertIntoBST(root.right, val)
return root
b. 迭代法:双指针
迭代法遍历的过程中,需要记录当前遍历节点的父节点,这样才能做插入节点的操作。用到记录 pre
和 cur
两个指针的技巧。
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if not root:
return TreeNode(val)
cur = root
while cur: # 用循环不断寻找新节点的pre
pre = cur # 首先保存当前非空节点作为下一次迭代的父节点
if val < cur.val:
cur = cur.left
elif val > cur.val:
cur = cur.right
# 跳出循环,新节点的pre已经找到,连接新节点和pre
if val < pre.val:
pre.left = TreeNode(val)
elif val > pre.val:
pre.right = TreeNode(val)
return root
450. 删除二叉搜索树中的节点
难度:☆4
a. 递归法
在递归函数的终止条件部分,有以下五种情况。
- 第一种情况:没找到要删除的节点,遍历到空节点直接返回。
- 找到要删除的节点:
第二种情况:删除节点的左右孩子都为空(叶子节点),直接删除节点,返回空为根节点。
第三种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点。
第四种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点。
第五种情况:删除节点的左右孩子都不为空,则将删除节点的左子树根节点(左孩子)放到删除节点的右子树最左侧节点的左孩子上,返回删除节点的右孩子为新的根节点。
第五种情况最复杂,改变树的结构是把左子树挂到右子树的最左侧,再删除根节点。用 cur
指针寻找右子树的最左侧节点。
递归调用,把新的节点返回给上一层,上一层就用 root.left
或者 root.right
接住。
class Solution:
def deleteNode(self, root: Optional[TreeNode], key: int) -> Optional[TreeNode]:
if not root: # 没找到要删除的节点
return None
if key == root.val: # 找到要删除的节点
if not root.left and not root.right: # 叶子节点,左空右空
return None
elif root.left and not root.right: # 左不空右空
return root.left
elif not root.left and root.right: # 左空右不空
return root.right
else: # 左不空右不空
cur = root.right
while cur.left:
cur = cur.left
cur.left = root.left
return root.right
if key < root.val:
root.left = self.deleteNode(root.left, key)
if key > root.val:
root.right = self.deleteNode(root.right, key)
return root