ECCV2022|Rethinking Confidence Calibration for Failure Prediction
对预测结果提供可靠的置信度估计对于许多安全关键的应用非常重要现代的深度神经网络往往对其错误预测过于自信最近,许多校准方法已经被提出来缓解过度自信的问题一种校准置信度的初级和实际目的是通过过滤低置信度的预测来检测错误分类(称为失败预测)我们发现一个普遍存在但实际被忽略的现象🚩 即大多数置信度校准方法对失败预测无用或有害揭示流行的置信度校准方法往往导致正确样本和错误样本之间的置信度分离变得更差,从而更难以决定是否应该相信一个预测最后,受平坦极小值与置信度分离之间。
转载
2023-08-01 15:25:25 ·
296 阅读 ·
0 评论