位运算
一、位运算符号
& 按位与:相同位上都为1,才为1
| 按位或:相同位上只要有一个1,就为1
^ 按位异或:相同为0,相异为1
~(取反,不分正负数):0->1,1->0
<<按位左移:标准规定在右边补0
按位右移>>:正数则左边补0,负数标准没有规定在左边补充的数字,分为逻辑右移和算术右移,具体由编译器决定,windows平台和gcc采取算术右移即负数补1)
二、常见的二进制位的变换操作
下面列举了一些常见的二进制位的变换操作。
去掉最后一位 | (101101->10110) |
在最后加一个0 | (101101->1011010) |
在最后加一个1 | (101101->1011011) |
把最后一位变成1 | (101100->101101) |
把最后一位变成0 | (101101->101100) |
最后一位取反 | (101101->101100) |
把右数第k位变成1 | (101001->101101,k=3) |
把右数第k位变成0 | (101101->101001,k=3) |
右数第k位取反 | (101001->101101,k=3) |
取末三位 | (1101101->101) |
取末k位 | (1101101->1101,k=4) |
取右数第k位 | (1101101->1,k=4) |
把右边连续的1变成0 | (100101111->100100000) |
把右起第一个0变成1 | (100101111->100111111) |
把右边连续的0变成1 | (11011000->11011111) |
为解决此类二进制位的变换操作,我们总结了一下步骤:
类型一:
1、确定符号
得到1 | 或1 | 其它位为0 |
---|---|---|
得到0 | 与0 | 其它位为1 |
取反 | ^1 | 其它位为0 |
2、确定数字
3、构造上一步的数字
去掉最后一位 (101101->10110) 只需右移1位 x >> 1
在最后加一个0 (101101->1011010) 同理左移1位 x << 1
在最后加一个1 (101101->1011011) 最后加1个1,先左移1位得到末尾0,按照步骤我们要将0变成1,再或1,即得 (x << 1)|1
把最后一位变成1 (101100->101101) x | 1
把最后一位变成0 (101101->101100) (x | 1)-1或者最后一位取反 | (101101->101100) | x ^ 1
把右数第k位变成1 (101001->101101,k=3)
分析:1、得到1便或1;2、确定第k位;3、构造右数的第k位,即1左移k-1位再或1。即 x | (1 << (k-1))
把右数第k位变成0 (101101->101001,k=3) x & ~(1 << (k-1))
右数第k位取反 (101001->101101,k=3) x ^ (1 << (k-1))
类型二:1&1=1,0&1=0,即和1相与得它本身
取末三位 (1101101->101) x & 7
分析:1&1=1,0&1=0,即和1相与得它本身,取末尾三位就是该数字和111相与,111即为7,因此得x&7。
取末k位 (1101101->1101,k=4) x & ((1 << k)-1)
分析:同理,要留下后四位只需&1111,接下来构造1111,即1<<4得10000-1即1111.
类型三:
取右数第k位 (1101101->1,k=4) (x >> (k-1)) & 1
类型四:首先确定符号,分析对操作数加1或者减1来构造数字
把右边连续的1变成0 | (100101111->100100000) | x & (x+1)
分析:首先考虑将1变成0,确定符号&,这种类型我们如何考虑连续个1 呢,可以将这个数加1,产生进位,这样就得到了连续的0,即100101111&100110000,所得100100000。
把右起第一个0变成1 | (100101111->100111111) | x | (x+1)
分析:确定符号|,考虑右数的第一个0,对这个数加1,再和它本身相或。
把右边连续的0变成1 | (11011000->11011111) | x | (x-1)
分析:确定符号|,考虑连续个0,可以将这个数减1,再和它本身相或。