hive文件格式

hive文件存储格式包括以下几类:

1、TEXTFILE

2、SEQUENCEFILE

3、RCFILE

4、ORCFILE(0.11以后出现)

其中TEXTFILE为默认格式,建表时不指定默认为这个格式,导入数据时会直接把数据文件拷贝到hdfs上不进行处理;

SEQUENCEFILE,RCFILE,ORCFILE格式的表不能直接从本地文件导入数据,数据要先导入到textfile格式的表中, 然后再从表中用insert导入SequenceFile,RCFile,ORCFile表中。

前提创建环境:

hive 0.8

创建一张testfile_table表,格式为textfile。

create table if not exists testfile_table( site string, url string, pv bigint, label string) row format delimited fields terminated by ‘\t’ stored as textfile;

load data local inpath ‘/app/weibo.txt’ overwrite into table textfile_table;

一、TEXTFILE
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。
可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,
从而无法对数据进行并行操作。
示例:

复制代码
create table if not exists textfile_table(
site string,
url string,
pv bigint,
label string)
row format delimited
fields terminated by ‘\t’
stored as textfile;
插入数据操作:
set hive.exec.compress.output=true;
set mapred.output.compress=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table textfile_table select * from textfile_table;
复制代码
二、SEQUENCEFILE
SequenceFile是Hadoop API提供的一种二进制文件支持,其具有使用方便、可分割、可压缩的特点。
SequenceFile支持三种压缩选择:NONE,RECORD,BLOCK。Record压缩率低,一般建议使用BLOCK压缩。
示例:

复制代码
create table if not exists seqfile_table(
site string,
url string,
pv bigint,
label string)
row format delimited
fields terminated by ‘\t’
stored as sequencefile;
插入数据操作:
set hive.exec.compress.output=true;
set mapred.output.compress=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
SET mapred.output.compression.type=BLOCK;
insert overwrite table seqfile_table select * from textfile_table;
复制代码
三、RCFILE
RCFILE是一种行列存储相结合的存储方式。首先,其将数据按行分块,保证同一个record在一个块上,避免读一个记录需要读取多个block。其次,块数据列式存储,有利于数据压缩和快速的列存取。
RCFILE文件示例:

复制代码
create table if not exists rcfile_table(
site string,
url string,
pv bigint,
label string)
row format delimited
fields terminated by ‘\t’
stored as rcfile;
插入数据操作:
set hive.exec.compress.output=true;
set mapred.output.compress=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table rcfile_table select * from textfile_table;
复制代码
四、ORCFILE()
五、再看TEXTFILE、SEQUENCEFILE、RCFILE三种文件的存储情况:

复制代码
[hadoop@node3 ~] hadoopdfsdus/user/hive/warehouse/hdfs://node1:19000/user/hive/warehouse/hbasetable10hdfs://node1:19000/user/hive/warehouse/hbasetable20hdfs://node1:19000/user/hive/warehouse/orcfiletable0hdfs://node1:19000/user/hive/warehouse/rcfiletable102638073hdfs://node1:19000/user/hive/warehouse/seqfiletable112497695hdfs://node1:19000/user/hive/warehouse/testfiletable536799616hdfs://node1:19000/user/hive/warehouse/textfiletable107308067[hadoop@node3 ] h a d o o p d f s − d u s / u s e r / h i v e / w a r e h o u s e / ∗ h d f s : / / n o d e 1 : 19000 / u s e r / h i v e / w a r e h o u s e / h b a s e t a b l e 1 0 h d f s : / / n o d e 1 : 19000 / u s e r / h i v e / w a r e h o u s e / h b a s e t a b l e 2 0 h d f s : / / n o d e 1 : 19000 / u s e r / h i v e / w a r e h o u s e / o r c f i l e t a b l e 0 h d f s : / / n o d e 1 : 19000 / u s e r / h i v e / w a r e h o u s e / r c f i l e t a b l e 102638073 h d f s : / / n o d e 1 : 19000 / u s e r / h i v e / w a r e h o u s e / s e q f i l e t a b l e 112497695 h d f s : / / n o d e 1 : 19000 / u s e r / h i v e / w a r e h o u s e / t e s t f i l e t a b l e 536799616 h d f s : / / n o d e 1 : 19000 / u s e r / h i v e / w a r e h o u s e / t e x t f i l e t a b l e 107308067 [ h a d o o p @ n o d e 3   ] hadoop dfs -ls /user/hive/warehouse/*/
-rw-r–r– 2 hadoop supergroup 51328177 2014-03-20 00:42 /user/hive/warehouse/rcfile_table/000000_0
-rw-r–r– 2 hadoop supergroup 51309896 2014-03-20 00:43 /user/hive/warehouse/rcfile_table/000001_0
-rw-r–r– 2 hadoop supergroup 56263711 2014-03-20 01:20 /user/hive/warehouse/seqfile_table/000000_0
-rw-r–r– 2 hadoop supergroup 56233984 2014-03-20 01:21 /user/hive/warehouse/seqfile_table/000001_0
-rw-r–r– 2 hadoop supergroup 536799616 2014-03-19 23:15 /user/hive/warehouse/testfile_table/weibo.txt
-rw-r–r– 2 hadoop supergroup 53659758 2014-03-19 23:24 /user/hive/warehouse/textfile_table/000000_0.gz
-rw-r–r– 2 hadoop supergroup 53648309 2014-03-19 23:26 /user/hive/warehouse/textfile_table/000001_1.gz
复制代码
总结:
相比TEXTFILE和SEQUENCEFILE,RCFILE由于列式存储方式,数据加载时性能消耗较大,但是具有较好的压缩比和查询响应。数据仓库的特点是一次写入、多次读取,因此,整体来看,RCFILE相比其余两种格式具有较明显的优势。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页