Edit Distance

本文介绍了一种计算两个字符串之间的编辑距离的算法,即把一个字符串转换成另一个字符串所需的最少操作次数(包括插入、删除和替换字符)。通过动态规划的方法,详细解析了如何实现这一算法,并给出了具体的代码实现。
摘要由CSDN通过智能技术生成

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character

c) Replace a character

将word1变化为word2所需的最少步骤,每个步骤可以执行:删除一个任意字符,增加一个任意字符,改变一个字符为其他任意字符

思路:使用dp[i][j]表示word1的(0,i)子串变化为word2的(0,j)子串所需要的步骤数,根据上面的三个变化规则

dp[i][j] = min{dp[i-1][j] + 1,dp[i][j-1] + 1, dp[i-1[j-1] + 1}

如果wrod1[i] == word2[j]

那么dp[i][j] = min{dp[i][j], dp[i-1][j-1]}

class Solution {
    public int minDistance(String word1, String word2) {
        char[] cha = word1.toCharArray(), chb = word2.toCharArray();
        int lena = cha.length, lenb = chb.length;
        if(lena == 0 || lenb == 0)
        	return lena + lenb;
        int[][] record = new int[lena + 1][lenb + 1];
        for(int[] it : record)
        	Arrays.fill(it, 9999);
        for(int i = 0; i < lena + 1; i++){
        	for(int j = 0; j < lenb + 1; j++){
        		if(i == 0 || j == 0){
        			record[i][j] = i + j;
        			continue;
        		}
        		record[i][j] = Math.min(record[i - 1][j - 1] + 1, record[i][j]);
        		record[i][j] = Math.min(record[i - 1][j] + 1, record[i][j]);
        		record[i][j] = Math.min(record[i][j - 1] + 1, record[i][j]);
        		if(cha[i - 1] == chb[j - 1])
        			record[i][j] = Math.min(record[i - 1][j - 1], record[i][j]);
        		//System.out.print(record[i][j] + " ");
        	}
        	//System.out.println();
        }
        return record[lena][lenb];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值