Prime Number of Set Bits in Binary Representation

Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime number of set bits in their binary representation.

(Recall that the number of set bits an integer has is the number of 1s present when written in binary. For example, 21 written in binary is 10101 which has 3 set bits. Also, 1 is not a prime.)

Example 1:

Input: L = 6, R = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
9 -> 1001 (2 set bits , 2 is prime)
10->1010 (2 set bits , 2 is prime)

Example 2:

Input: L = 10, R = 15
Output: 5
Explanation:
10 -> 1010 (2 set bits, 2 is prime)
11 -> 1011 (3 set bits, 3 is prime)
12 -> 1100 (2 set bits, 2 is prime)
13 -> 1101 (3 set bits, 3 is prime)
14 -> 1110 (3 set bits, 3 is prime)
15 -> 1111 (4 set bits, 4 is not prime)

Note:

  1. L, R will be integers L <= R in the range [1, 10^6].
  2. R - L will be at most 10000.

题目描述:用f(n)表示n的二级制表示中1的个数,问从L到R之间的所有数x,f(x)是质数的数x的个数

这里介绍网上的一种计算n的二进制表示中1的个数的方法:方法根据这样一个规律,n & (n-1)中的1的个数比n中1的个数少一个,我不知道怎么证明,有兴趣的可以自己试试。因此,不断将n & (n-1)赋予n,直到n为0,迭代的次数就是n中1的个数。

本题代码如下:

class Solution {
    public int countPrimeSetBits(int L, int R) {
    	int[] prime = new int[]{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
    	Set<Integer> set = new HashSet<Integer>();
    	for(int num : prime)
    		set.add(num);
    	int res = 0;
    	for(int i = L; i < R + 1; i++){
    		if(set.contains(compute(i)))
    			res++;
    	}
        return res;
    }
    
    public int compute(int num){
    	int res = 0;
    	while(num != 0){
    		res++;
    		num = num & (num - 1);
    	}
    	return res;
    }
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页