多数据源的连表方案

概念

ETL(extract、transform、load) :数据仓库技术

宽表和窄表:

  • 宽表不符合数据库设计范式
    • 包含大量冗余字段,便于数据挖掘
  • 窄表严格符合数据库设计范式
    • 没有冗余,修改一个数据涉及多张表

SLA:服务级别协议

跨库连表方案

把一部分 ETL 放到流式计算/Spark 中,节省在线查询复杂度

  • 表 1、表 2、表 3 -> 内存连表查询
    • 内存需求较大
    • 支持数据量有限
    • 无法支持多数据源
    • 对 Where 条件、分页能力有限
  • 表 i -> 镜像 i,再到 DB 引擎 Join
    • 数据量过大、表过多,会对引擎带来较大压力
    • 支持连表大数据量的数据库价格较贵
  • 表 i -> 镜像 i,再到 ETL 流程合并 -> 宽表查询
    • 支持大数据量和多数据源类型,数据以流的形式给出,对在线引擎造成压力较小
    • 不读原表,不对原表造成读压力
    • 系统复杂,有一定的数据延迟,需要维护成本
  • 表 1、表 2、表 3 -> 图引擎
    • 原始数据构成点和边,进行查询
      • 正向 edge 过多会造成查询慢的问题

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值