优点:在数据较少的情况下仍然有效,可以处理多类别问题
缺点:对于输入数据的准备方式较为敏感
适用数据类型:标称型数据
由于分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值,贝叶斯决策可以达到这个需求。
朴素贝叶斯分类器的前提假设:
1. 特征相互独立
假设特征为10个,每个特征需要N个样本,则需要N的10次方个样本,如果特征相互独立,则需要N*10个样本。
2. 每个特征同等重要
贝叶斯决策理论:求x属于C1或者C2的概率
1. 创建样本集合
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
朴素贝叶斯分类器通常有两种实现方式:
1. 贝努利模型,只考虑出现不出现,不考虑出现的次数
2. 多项式模型实现,考虑出现的次数
本文暂时采用1
2. 创建查询词库
# 创建一个包含在所有文档中出现的不重复词的列表
def creatVocabList(dataSet):
vocabSet=set([])
for document in dataSet:
vocabSet = vocabSet| set(document)
return list(vocabSet)
3. 转换成标准长度的向量
#将每一个inputSet转换为一个向量
def setOfWords2Vec(vocabList,inputSet):
returnVec = [0] *len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] =1
else:print ("不存在")
return returnVec
4. 计算概率的伪代码:
计算每个类别中的文档数目
对每篇训练文档:
对每个类别:
如果词条出现文档中―增加该词条的计数值
增加所有词条的计数值
对每个类别:
对每个词条:
将该词条的数目除以总词条数目得到条件概率
返回每个类别的条件概率
朴素贝叶斯分类器训练函数:
#朴素贝叶斯分类器训练函数
def trainNB0(trainMatrix ,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = zeros (numWords); p1Num = zeros (numWords);
p0Denom = 0.0;p1Denom = 0.0;
for i in range(numTrainDocs):
if trainCategory[i] ==1:
p1Num +=trainMatrix[i]
p1Denom +=sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = p1Num/p1Denom
p0Vect = p0Num / p0Denom
return p0Vect,p1Vect,pAbusive
5. 分类判断
# 朴素贝叶斯分类函数
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1-pClass1)
if p1>p0:
return 1
else:
return 0
测试用例
def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = creatVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry =["love","my","dalmation"]
thisDoc = array(setOfWords2Vec(myVocabList,testEntry))
print testEntry," classified as :" ,classifyNB(thisDoc,p0V,p1V,pAb)
testEntry = ["stupid","garbage"]
thisDoc = array(setOfWords2Vec(myVocabList,testEntry))
print testEntry," classified as :" ,classifyNB(thisDoc,p0V,p1V,pAb)