普通研究助理:掌握Python语言和相关的工具模块;辅助进行自然语言处理、统计分析的相关工作
1.熟练使用Python语言,熟练使用关系型数据库、图数据库
2.了解自然语言处理、机器学习的基础算法,了解word2vec,jieba,sklearn等相关工具
3.了解统计分析的基础算法,了解numpy,pandas,matplotlib等相关工具 6.了解深度神经网络模型,如DNN、RNN、LSTM等
高级研究助理要求:参与团队构建行业知识图谱;研究Open IE(http://openie.allenai.org/)并进行实现;进行数据统计分析工作。
1.熟悉自然语言处理相关技术,在中文分词、词性标注、实体识别、依存文法分析、信息提取等领域有经验优先
2.熟悉知识图谱相关知识,了解开放域信息抽取(Open IE),有知识图谱构建经验优先
3.良好的数理统计基础,能理解并熟练运用常用的数据挖掘、机器学习算法和工具
旷视算法
计算机视觉和深度学习
深度学习/机器学习;计算机视觉(包括分类,检测,分割,跟踪,SLAM和三维重建);图像或信号处理;计算摄影学和计算机图形学;
熟悉本研究领域的最新研究成果,公开数据集,和相关的开源系统;
Python 等至少一门脚本语言,使用过 Theano, Caffe, Torch, TensorFlow 等开源深度学习框架优先;
深度模型训练,图像分类、物体检测与分割、视频分析、三维建模、计算机图形学等相关科研经历者
公有云、智能硬件 face++
• 多种编程语言 深入理解计算机体系结构;分布式系统设计
金融行业IT相关的工作,不同岗位的工作是不同的,大致上可以分为科技管理、开发测试和生产运维三个方向。
1.科技管理。听起来似乎有些高大上,但实际上就是个打杂的。工作以沟通(吵架)、报告(请示)、协调(博弈)为主,琐碎事情非常多。
该岗位的工作涉及应用管理(应用系统建设规划)、项目管理(跟踪项目进度)、报告管理(定期整理汇总数据)、采购管理(产品、服务的测评及竞标)、需求管理(将业务部门的需求翻译成程序猿看得懂的语言)乃至专利管理(专盯专利局)、安全管理(合规内控、安全案件等)。
常见于银行总行科技部,各公司PMO(项目管理办公室)、研发管理办公室、测试管理办公室,项目组项目经理等。
工作体验:鉴于广大程序猿不爱说人话、不会说人话的特点,工作的成就感在于通过刷脸的方式帮广大一线工作者提供翻译服务,游走在刀锋的感觉;挫败感在于经常被杂事所淹没,经常一天下来发现没干正事。如果想要在这个岗位有所成长,那么强烈建议在一线(开发测试、生产维护)锻炼一年以上。
2.开发测试。金融IT的主力军,大多数从业员“梦开始”的地方。
该工作岗位如果用游戏来比喻的话,开发人员(码农)和测试人员(黑盒)是两个基础职业,所有进阶职业都需要在基础职业满足经验需求后才可获得提升。
开发人员(码农):工作以修改代码为主,参考老代码根据业务规则的变化进行修改,新增功能等,工作难度不大,会读代码就能写代码,各类非计算机出身(数学、物理、电子等)的应届毕业生可顺利转型。
对应进阶职业(职业发展角度分析):
开发人员(技术专长):如Oracle、DB2、AIX、z/OS、Cobol等,通过时间累积总能在技术上获得专长。
开发人员(业务专长):如银行卡收单、法贷、纸黄金、电子银行、SWIFT汇款等,代码怎么写业务流程就是怎么样,业务人员也没法比自己更清楚。
架构师:脱离了某类语言或某类系统的局限性,开始全局性考虑系统性能容量、体系架构、跨应用交互、横向纵向扩展性等问题,可以回答“双十一你这系统顶得住吗”这类进阶问题,开始思考应用系统“是什么?从哪里来?往哪里去”这类终极问题。
测试人员(黑盒测试):工作以做交易为主,编写测试案例,模拟业务人员交易场景,对照软需验证功能,发现Bug及时报告。
对应进阶职业(职业发展角度分析):
测试人员(技术专长):不满足于黑盒测试,开始阅读代码尝试白盒测试,开发自动化测试工具、推进持续集成测试,编写测试脚本,实施性能压力/疲劳测试。测试人员(业务专长):开发人员看到的只是一个点,测试人员看到的是整个面,相对于开发的深,测试人员更擅长广,整个业务条线的交易代码倒背如流,业务流程如何优化他们更有发言权。
工作体验:谁说金融IT只能搞技术?技术和业务两个方向始终向你打开。人的性格特点不一样,有的喜欢跟机器打交道,有的喜欢跟人打交道,适合自己的才是最好的。我选择了业务方向,你呢?不用急,慢慢摸,没人在一开始就知道。开发测试累吗?累,开发是一线,功能如何实现所有人都要问你;测试是二线,一不小心就可能漏过几个亿。
3.生产维护。金融IT成果的最终把关者,再牛逼的系统最后没上线都是白搭。
该工作岗位涉及应用维护(与开发测试对接)、操作系统维护(操作系统用户管理、参数管理等)、存储维护(外置存储挂接、NBU备份)、网络维护(思科网络实验室算什么!我操的可是跨国的广域网!)、系统组件维护(DB2\WAS等等)、运行操作(在规定时间按下规定按钮)、设施维护(空调、排水、电力等)。
常见于数据中心。
工作体验:系统上线、机房搬迁等是最崩溃的,为了减少业务影响,金融生产系统的变更一般安排在晚上10点后,凌晨6点前。熬夜是常有的事情,半夜被电话吵醒也是常事,加上数据中心常建在郊外,晚上万物俱静,加班后如何归家是个难题。但如果系统运行稳定,事情会相对少些,由于工作的特殊性,调休也会比较容易,凑出个长假出个远门还是很方便的——对了,手机别忘了开漫游。
投行的IT部门其实很大,简单来说,投行的各个其他部门都需要用IT系统,都需要IT的支持,由此产生了对应各个其他投行部门的IT部,比如支持IBD的IT,支持trading的IT,支持middle office例如risk and finance的IT, 支持operations的IT。每一个这样的对应IT部门都又可以细分为软件开发(application development), 技术支持(IT support), 商业分析(business analyst) 等层面。另外,这些IT都需要有基础设施,所以又有相关部门负责基础设施(infrastructure)。
投行IT都有哪些岗位?
从以上的部门分类衍生开来,IT岗位有如下几种:
软件研发 (application development):投行会有一些自己研发的软件,所以需要研发人员。即使是从各种供应商那里购买专业的软件,也需要有自己的程序员来根据公司具体的需要来加工处理这些软件(customization).
技术支持 (IT support):除了专门写代码的程序员以外,当然还有专门的技术支持人员负责这些软件的日常维护,给用户疑难解答之类。当然,发现重大问题的时候就得需要软件研发的人来进行调整,甚至找供应商解决。
商业分析 (business analyst):business analysts是其他部门和IT间的桥梁,比如说,risk IT的business analyst就负责和风险管理部接洽,把风险管理部门的用户需求翻译成具体的IT任务,甚至帮助测试。
质量测试 (quality assurance):顾名思义,就是进行各种测试
础设施构建与维护 (IT operations, system engineering):构建和维护各种基础设施,比如服务器,网络,数据库,以及一些全银行的人都会用的系统,比如邮箱啦即时通讯工具啦之类。
项目管理 (project management):可以是任何方面的IT项目,确保钱到位,人到位,项目进展顺利。
行政管理 (business management):负责管理预算,经费,编制等等。
服务管理 (service management):由于IT终极意义上讲是一种服务,而且现在很多银行会把一部分IT外包,就产生了服务管理岗。它可以是和外包商接洽,确保外包的质量,也可以是IT内部确保服务高效高质量的一种岗位。
IT风险管理:银行最重要就是安全,所以有专门的风险管理人员来评估和解决IT方面的风险问题。
投行IT的职业发展前景?
继续做投行IT,努力爬到管理层:你可以在同一种岗位上一直做,或者在各个IT岗位和各个IT部门跳来跳去,随着年资,能力,阅历的增长,你负责的东西会越来越多,与此对应的就是升职。但是比起负责给投行赚钱的front office,IT的升职会相对缓慢。而和所有的企业一样,投行IT也是金字塔层级,所以越往上越难升职,机遇人脉就越重要。
跳去对口的投行其他部门,比如finance IT的跳去做投行的财务:一直做finance IT的系统,能把系统玩得很熟不说,对finance部具体的业务也肯定是要了解,和finance部的用户也会有接触,所以有合适的机会就可以跳过去。但是即使你做的是front office的系统,跳去front office还是很难。
跳去供应商公司(vendor side):比如你一直在做一个从vendor那里买来的财务系统,你对这个系统有了相当的了解,也经常和vendor打交道,那么,跳去vendor side不难。跳去以后很有可能继续被派去做金融机构财务系统的consultant或者support
跳去咨询公司:因为有了多年从事金融业IT的经验,可以去咨询公司做偏金融IT的咨询师
跳去纯科技企业,做和金融不相关的纯IT工作:金融IT以用户需求为主,以安全性为最高考量,所以比起谷歌之类纯IT公司,投行IT使用的科技必然相对陈旧。有一些技术很强的程序员之类可能做了一段时间觉得金融IT无法实现自己做尖端科技的愿望,或者太迁就用户,所以会选择跳去纯IT企业。