最近股市表现活跃,许多具备编程能力的朋友都希望利用自己的技术来挖掘和分析股票数据。希望通过技术分析为股票投资提供有力的决策支持。
小编收集了国内可以正常使用的几个股票信息获取的财经数据接口库,最终选定了AKshare作为基础数据获取工具。选择AKshare的原因在于它是免费的,且提供的数据内容非常全面和广泛。不过,小编比较懒惰。文档包含的内容较为丰富,文档也相对复杂,阅读起来颇为费力。因此,笔者采用了基于检索增强生成(RAG)的模式,通过输入特定的提示词,快速定位并获取所需的函数,从而提高了数据处理的效率和便捷性。省心省力。
下面我们就开始演示代码,非常简单,不复杂。
1、导入数据 akshare的技术手册文件stock.md.txt
如果之前已经创建了索引,并保存在本地,可以跳过这一步
from llama_index.core import SimpleDirectoryReader
stock_md = SimpleDirectoryReader(
input_files=["./stock.md.txt"]
).load_data(show_progress=True)
2、 配置LLM和Embedding模型
这里我们使用的是阿里源的QWEN_TURBO大模型和TEXT_EMBEDDING_V2嵌入式模型
# 初始化简单的向量索引
# 注意:如果索引已经加载,可不运行此单元格!
from llama_index.core import VectorStoreIndex
from llama_index.core import Settings
Settings.chunk_size = 512
Settings.chunk_overlap = 64
#为了提高访问速度,我们llm模型使用阿里源在线api,embbedding使用本地模型
from llama_index.llms.dashscope import DashScope, DashScopeGenerationModels
from llama_index.embeddings.dashscope import DashScopeEmbedding, DashScopeTextEmbeddingModels, DashScopeTextEmbeddingType
import dashscope
# Ensure the API key is a valid string
dashscope.api_key = 'sk-xxxxxxx'
DashScope_llm = DashScope(
model_name=DashScopeGenerationModels.QWEN_TURBO, api_key = 'sk-xxxxxxx'
)
Embed_model = DashScopeEmbedding(
model_name=DashScopeTextEmbeddingModels.TEXT_EMBEDDING_V2,
text_type=DashScopeTextEmbeddingType.TEXT_TYPE_DOCUMENT,
)
Settings.llm=DashScope_llm
Settings.embed_model = Embed_model
3、为文档设置向量索引
先设置一个向量索引,构建索引并将其保存到磁盘上。如果先前已经创建了索引,从本地加载索引。
import os
from llama_index.core import load_index_from_storage
if not os.path.exists("./akshare_index.json"):
print("创建索引,并保存到磁盘")
context_index = VectorStoreIndex.from_documents(stock_md)
context_index.storage_context.persist(persist_dir="./akshare_index.json")
else:
print("从磁盘加载索引")
from llama_index.core import StorageContext, load_index_from_storage
context_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir="./akshare_index.json")
)
4、构建查询工具
这里通过将我们的文档索引查询功能,定义为一个查询工具,akstock_tool
from llama_index.core.tools import QueryEngineTool, ToolMetadata
query_engine = context_index.as_query_engine()
akstock_tool = QueryEngineTool(
query_engine=query_engine,
metadata=ToolMetadata(
name="akstock",
description=(
f"这是一个基于akshare技术文档的查询工具,"
f"专门用于提供股票相关信息的代码示例。"
f"它能够解析akshare文档,"
f"并为用户提供精确的代码示例和信息,"
f"以帮助用户进行股票数据分析和研究。"
f"该工具支持多种查询模式,"
f"并能够根据用户的需求提供定制化的解决方案。"
),
),
)
5、构建ReAct模式Agent
我们这里llamaindex的ReAct模式构建一个agent,tools被赋予我们的查询函数akstock_tool。
另外,这里我们通过agent.update_prompts函数,给agent赋予了一个系统prompt,定义了agent的角色和回答模式。可以看到prompt中包含了很多 函数示例代码功能描述。之所以在这里加入函数示例代码功能描述 ,是为了防止agent回到问题脱离文档内容,为agent提供一个内嵌的参考。
from llama_index.core.agent import ReActAgent
#定义成工具查询
agent = ReActAgent.from_tools(tools=[akstock_tool],
max_iterations=10,
verbose=True,
max_tokens=1000,
)
from llama_index.core.prompts import PromptTemplate
react_system_header_str = """
你是一个热情的RAG助手。你的所有回答必须依据akshare的技术文档。
## 函数示例代码功能描述:
```
-- 上海证券交易所-股票数据总貌
-- 深圳证券交易所-市场总貌-证券类别统计
-- 深圳证券交易所-市场总貌-地区交易排序
-- 深圳证券交易所-统计资料-股票行业成交数据
-- 上海证券交易所-数据-股票数据-成交概况-股票成交概况-每日股票情况
-- 东方财富-个股-股票信息
-- 东方财富-行情报价
-- 东方财富网-沪深京 A 股-实时行情数据
-- 东方财富网-沪 A 股-实时行情数据
-- 东方财富网-深 A 股-实时行情数据
-- 东方财富网-京 A 股-实时行情数据
-- 东方财富网-新股-实时行情数据
-- 东方财富网-创业板-实时行情
-- 东方财富网-科创板-实时行情
-- 新浪财经-沪深京 A 股数据, 重复运行本函数会被新浪暂时封 IP, 建议增加时间间隔
-- 雪球-行情中心-个股
-- 东方财富-沪深京 A 股日频率数据; 历史数据按日频率更新, 当日收盘价请在收盘后获取
-- 新浪财经-沪深京 A 股的数据, 历史数据按日频率更新; 注意其中的 sh689009 为 CDR, 请 通过 ak.stock_zh_a_cdr_daily 接口获取
-- 腾讯证券-日频-股票历史数据; 历史数据按日频率更新, 当日收盘价请在收盘后获取
-- 新浪财经-沪深京 A 股股票或者指数的分时数据,目前可以获取 1, 5, 15, 30, 60 分钟的数据频率, 可以指定是否复权
-- 东方财富网-行情首页-沪深京 A 股-每日分时行情; 该接口只能获取近期的分时数据,注意时间周期的设置
-- 东财财富-分时数据
-- 新浪财经-日内分时数据
-- 东方财富-股票行情-盘前数据
-- 每个交易日 16:00 提供当日数据; 如遇到数据缺失, 请使用 ak.stock_zh_a_tick_163() 接口(注意数据会有一定差异)
-- 上海证券交易所-科创板-CDR
-- 东方财富网-实时行情数据
-- B 股数据是从新浪财经获取的数据, 重复运行本函数会被新浪暂时封 IP, 建议增加时间间隔
-- B 股数据是从新浪财经获取的数据, 历史数据按日频率更新
-- 新浪财经 B 股股票或者指数的分时数据,目前可以获取 1, 5, 15, 30, 60 分钟的数据频率, 可以指定是否复权
-- 新浪财经-行情中心-沪深股市-次新股
-- 东方财富网-数据中心-股市日历-公司动态
-- 东方财富网-行情中心-沪深个股-风险警示板
-- 东方财富网-行情中心-沪深个股-新股
-- 同花顺-数据中心-新股数据-新股上市首日
-- 同花顺-数据中心-新股数据-IPO受益股
-- 东方财富网-行情中心-沪深个股-两网及退市
-- 新浪财经-科创板股票实时行情数据
-- 新浪财经-科创板股票历史行情数据
-- 东方财富-科创板报告数据
-- A+H 股数据是从腾讯财经获取的数据, 延迟 15 分钟更新
-- 腾讯财经-A+H 股数据
-- A+H 股数据是从腾讯财经获取的数据, 历史数据按日频率更新
-- 东方财富网-美股-实时行情
-- 新浪财经-美股; 获取的数据有 15 分钟延迟; 建议使用 ak.stock_us_spot_em() 来获取数据
-- 东方财富网-行情-美股-每日行情
-- 东方财富网-行情首页-美股-每日分时行情
-- 美股历史行情数据,设定 adjust="qfq" 则返回前复权后的数据,默认 adjust="", 则返回未复权的数据,历史数据按日频率更新
-- 美股粉单市场的实时行情数据
-- 美股-知名美股的实时行情数据
-- 所有港股的实时行情数据; 该数据有 15 分钟延时
-- 港股主板的实时行情数据; 该数据有 15 分钟延时
-- 获取所有港股的实时行情数据 15 分钟延时
-- 东方财富网-行情首页-港股-每日分时行情
-- 港股-历史行情数据, 可以选择返回复权后数据, 更新频率为日频
-- 东方财富网-行情中心-港股市场-知名港股实时行情数据
-- 东方财富网-数据中心-特色数据-机构调研-机构调研统计
-- 东方财富网-数据中心-特色数据-机构调研-机构调研详细
-- 同花顺-主营介绍
-- 东方财富网-个股-主营构成
-- 益盟-F10-主营构成
-- 益盟-F10-管理层讨论与分析
-- 东方财富网-数据中心-特色数据-股权质押-股权质押市场概况
-- 东方财富网-数据中心-特色数据-股权质押-上市公司质押比例
-- 东方财富网-数据中心-特色数据-股权质押-重要股东股权质押明细
-- 东方财富网-数据中心-特色数据-股权质押-质押机构分布统计-证券公司
-- 东方财富网-数据中心-特色数据-股权质押-质押机构分布统计-银行
-- 东方财富网-数据中心-特色数据-股权质押-上市公司质押比例-行业数据
-- 东方财富网-数据中心-特色数据-商誉-A股商誉市场概况
-- 东方财富网-数据中心-特色数据-商誉-商誉减值预期明细
-- 东方财富网-数据中心-特色数据-商誉-个股商誉减值明细
-- 东方财富网-数据中心-特色数据-商誉-个股商誉明细
-- 东方财富网-数据中心-特色数据-商誉-行业商誉
-- 东方财富网-数据中心-特色数据-股票账户统计
-- 东方财富网-数据中心-研究报告-东方财富分析师指数
-- 东方财富网-数据中心-研究报告-东方财富分析师指数-分析师详情
-- 东方财富网-数据中心-特色数据-千股千评
-- 东方财富网-数据中心-特色数据-千股千评-主力控盘-机构参与度
-- 东方财富网-数据中心-特色数据-千股千评-综合评价-历史评分
-- 东方财富网-数据中心-特色数据-千股千评-市场热度-用户关注指数
-- 东方财富网-数据中心-特色数据-千股千评-市场热度-市场参与意愿
-- 东方财富网-数据中心-特色数据-千股千评-市场热度-日度市场参与意愿
-- 东方财富网-数据中心-特色数据-千股千评-市场热度-市场成本
-- 东方财富网-数据中心-资金流向-沪深港通资金流向
-- 深港通-港股通业务信息-结算汇率
-- 沪港通-港股通信息披露-结算汇兑
-- 深港通-港股通业务信息-参考汇率
-- 沪港通-港股通信息披露-参考汇率
-- 东方财富网-行情中心-港股市场-港股通成份股
-- 东方财富-数据中心-沪深港通-市场概括-分时数据
-- 东方财富网-数据中心-沪深港通持股-板块排行
-- 东方财富网-数据中心-沪深港通持股-个股排行
-- 东方财富网-数据中心-沪深港通-沪深港通持股-每日个股统计
-- 东方财富网-数据中心-沪深港通-沪深港通持股-机构排行
-- 东方财富网-数据中心-资金流向-沪深港通资金流向-沪深港通历史数据
-- 东方财富网-数据中心-沪深港通-沪深港通持股-具体股票
-- 东方财富网-数据中心-沪深港通-沪深港通持股-具体股票-个股详情
-- 东方财富网-数据中心-特色数据-停复牌信息
-- 百度股市通-交易提醒-停复牌
-- 百度股市通-交易提醒-分红派息
-- 东方财富指定个股的新闻资讯数据
-- 财新网-财新数据通-内容精选
-- 百度股市通-财报发行
-- 东方财富网-数据中心-新股申购-打新收益率
-- 东方财富网-数据中心-新股数据-新股申购-新股申购与中签查询
-- 东方财富-数据中心-年报季报-业绩报表
-- 东方财富-数据中心-年报季报-业绩快报
-- 东方财富-数据中心-年报季报-业绩预告
-- 东方财富-数据中心-年报季报-预约披露时间
-- 巨潮资讯-数据-预约披露的数据
-- 巨潮资讯-首页-公告查询-信息披露公告-沪深京
-- 巨潮资讯-首页-公告查询-信息披露调研-沪深京
-- 巨潮资讯-数据-行业分类数据
-- 巨潮资讯-数据-上市公司行业归属的变动情况
-- 巨潮资讯-数据-公司股本变动
-- 巨潮资讯-个股-配股实施方案
-- 巨潮资讯-个股-公司概况
-- 巨潮资讯-个股-上市相关
-- 东方财富-数据中心-年报季报-业绩快报-资产负债表
-- 东方财富-数据中心-年报季报-业绩快报-资产负债表
-- 东方财富-数据中心-年报季报-业绩快报-利润表
-- 东方财富-数据中心-年报季报-业绩快报-现金流量表
-- 东方财富网-数据中心-特色数据-高管持股
-- 东方财富-数据中心-年报季报-分红配送
-- 东方财富网-数据中心-分红送配-分红送配详情
-- 同花顺-分红情况
-- 同花顺-港股-分红派息
-- 同花顺-数据中心-资金流向-个股资金流
-- 同花顺-数据中心-资金流向-概念资金流
-- 同花顺-数据中心-资金流向-行业资金流
-- 同花顺-数据中心-资金流向-大单追踪
-- 东方财富网-数据中心-个股资金流向
-- 东方财富网-数据中心-资金流向-排名
-- 东方财富网-数据中心-资金流向-大盘
-- 东方财富网-数据中心-资金流向-板块资金流-排名
-- 东方财富网-数据中心-资金流向-主力净流入排名
-- 东方财富网-数据中心-资金流向-行业资金流-xx行业个股资金流
-- 东方财富网-数据中心-资金流向-行业资金流-行业历史资金流
-- 东方财富网-数据中心-资金流向-概念资金流-概念历史资金流
-- 东方财富网-概念板-行情中心-日K-筹码分布
-- 东方财富网-数据中心-股东大会
-- 东方财富网-数据中心-重大合同-重大合同明细
-- 东方财富网-数据中心-研究报告-个股研报
-- 东方财富网-数据中心-公告大全-沪深京 A 股公告
-- 新浪财经-财务报表-三大报表
-- 东方财富-股票-财务分析-资产负债表-按报告期
-- 东方财富-股票-财务分析-资产负债表-按年度
-- 东方财富-股票-财务分析-利润表-报告期
-- 东方财富-股票-财务分析-利润表-按年度
-- 东方财富-股票-财务分析-利润表-按单季度
-- 东方财富-股票-财务分析-现金流量表-按报告期
-- 东方财富-股票-财务分析-现金流量表-按年度
-- 东方财富-股票-财务分析-现金流量表-按单季度
-- 同花顺-财务指标-资产负债表
-- 同花顺-财务指标-利润表
-- 同花顺-财务指标-现金流量表
-- 东方财富-股票-财务分析-资产负债表-已退市股票-按报告期
-- 东方财富-股票-财务分析-利润表-已退市股票-按报告期
-- 东方财富-股票-财务分析-现金流量表-已退市股票-按报告期
-- 东方财富-港股-财务报表-三大报表
-- 新浪财经-财务报表-关键指标
-- 同花顺-财务指标-主要指标
-- 新浪财经-财务分析-财务指标
-- 东方财富-港股-财务分析-主要指标
-- 新浪财经-发行与分配-历史分红
-- 东方财富网-个股-十大流通股东
-- 东方财富网-个股-十大股东
-- 东方财富网-数据中心-股东分析-股东持股变动统计-十大流通股东
-- 东方财富网-数据中心-股东分析-股东持股变动统计-十大股东
-- 同花顺-公司大事-高管持股变动
-- 同花顺-公司大事-股东持股变动
-- 东方财富网-数据中心-股东分析-股东持股分析-十大流通股东
-- 东方财富网-数据中心-股东分析-股东持股分析-十大股东
-- 东方财富网-数据中心-股东分析-股东持股明细-十大流通股东
-- 东方财富网-数据中心-股东分析-股东持股明细-十大股东
-- 东方财富网-数据中心-股东分析-股东持股统计-十大股东
-- 东方财富网-数据中心-股东分析-股东持股统计-十大股东
-- 东方财富网-数据中心-股东分析-股东协同-十大流通股东
-- 东方财富网-数据中心-股东分析-股东协同-十大股东
-- 东方财富网-数据中心-特色数据-股东户数数据
-- 东方财富网-数据中心-特色数据-股东户数详情
-- 新浪财经-发行与分配-分红配股
-- 巨潮资讯-个股-历史分红
-- 新浪财经-发行与分配-新股发行
-- 新浪财经-发行与分配-增发
-- 新浪财经-发行分配-限售解禁
-- 东方财富网-数据中心-特色数据-限售股解禁
-- 东方财富网-数据中心-限售股解禁-解禁详情一览
-- 东方财富网-数据中心-个股限售解禁-解禁批次
-- 东方财富网-数据中心-个股限售解禁-解禁股东
-- 新浪财经-股东股本-流通股东
-- 新浪行业-板块行情
-- 新浪行业-板块行情-成份详情, 由于新浪网页提供的统计数据有误, 部分行业数量大于统计数
-- 沪深京 A 股股票代码和股票简称数据
-- 上海证券交易所股票代码和简称数据
-- 深证证券交易所股票代码和股票简称数据
-- 北京证券交易所股票代码和简称数据
-- 深证证券交易所终止/暂停上市股票
-- 东方财富网-行情中心-沪深个股-两网及退市
-- 上海证券交易所暂停/终止上市股票
-- 新浪财经-股票曾用名
-- 深证证券交易所-市场数据-股票数据-名称变更
-- 新浪财经-股本股东-基金持股
-- 新浪财经-股本股东-主要股东
-- 新浪财经-机构持股-机构持股一览表
-- 新浪财经-机构持股-机构持股详情
-- 新浪财经-机构推荐池-具体指标的数据
-- 新浪财经-机构推荐池-股票评级记录
-- 巨潮资讯-数据中心-评级预测-投资评级
-- 申万宏源研究-行业分类-全部行业分类
-- 巨潮资讯-数据中心-行业分析-行业市盈率
-- 巨潮资讯-数据中心-新股数据-新股过会
-- 巨潮资讯-数据中心-新股数据-新股发行
-- 上海证券交易所-披露-监管信息公开-公司监管-董董监高人员股份变动
-- 深圳证券交易所-信息披露-监管信息公开-董监高人员股份变动
-- 北京证券交易所-信息披露-监管信息-董监高及相关人员持股变动
-- 巨潮资讯-数据中心-专题统计-股东股本-股东人数及持股集中度
-- 巨潮资讯-数据中心-专题统计-股东股本-实际控制人持股变动
-- 巨潮资讯-数据中心-专题统计-股东股本-高管持股变动明细
-- 东方财富网-数据中心-特色数据-高管持股-董监高及相关人员持股变动明细
-- 东方财富网-数据中心-特色数据-高管持股-人员增减持股变动明细
-- 巨潮资讯-数据中心-专题统计-公司治理-对外担保
-- 巨潮资讯-数据中心-专题统计-公司治理-公司诉讼
-- 巨潮资讯-数据中心-专题统计-公司治理-股权质押
-- 美港电讯-美港目标价数据
-- 东方财富网-数据中心-特色数据-券商业绩月报
-- 乐咕乐股-A 股个股指标: 市盈率, 市净率, 股息率
-- 乐咕乐股-股息率-A 股股息率
-- 乐咕乐股-股息率-恒生指数股息率
-- 乐咕乐股-大盘拥挤度
-- 乐咕乐股-股债利差
-- 乐估乐股-底部研究-巴菲特指标
-- 乐咕乐股-A 股等权重市盈率与中位数市盈率
-- 乐咕乐股-A 股等权重与中位数市净率
-- 乐咕乐股-主板市盈率
-- 乐咕乐股-指数市盈率
-- 乐咕乐股-主板市净率
-- 乐咕乐股-指数市净率
-- 百度股市通-A 股-财务报表-估值数据
-- 百度股市通- A 股或指数-股评-投票
-- 亿牛网-港股个股指标: 市盈率, 市净率, 股息率, ROE, 市值
-- 百度股市通-港股-财务报表-估值数据
-- 不同市场的创新高和新低的股票数量
-- 乐咕乐股-A 股破净股统计数据
-- 东方财富网-数据中心-主力数据-基金持仓
-- 东方财富网-数据中心-主力数据-基金持仓-基金持仓明细表
-- 东方财富网-数据中心-龙虎榜单-龙虎榜详情
-- 东方财富网-数据中心-龙虎榜单-个股上榜统计
-- 东方财富网-数据中心-龙虎榜单-机构买卖每日统计
-- 东方财富网-数据中心-龙虎榜单-机构席位追踪
-- 东方财富网-数据中心-龙虎榜单-每日活跃营业部
-- 东方财富网-数据中心-龙虎榜单-营业部排行
-- 东方财富网-数据中心-龙虎榜单-营业部统计
-- 东方财富网-数据中心-龙虎榜单-个股龙虎榜详情
-- 龙虎榜-营业部排行-上榜次数最多
-- 龙虎榜-营业部排行-资金实力最强
-- 龙虎榜-营业部排行-抱团操作实力
-- 新浪财经-龙虎榜-每日详情
-- 新浪财经-龙虎榜-个股上榜统计
-- 新浪财经-龙虎榜-营业上榜统计
-- 新浪财经-龙虎榜-机构席位追踪
-- 新浪财经-龙虎榜-机构席位成交明细
-- 东方财富网-数据中心-新股申购-首发申报信息-首发申报企业信息
-- 东方财富网-数据中心-新股数据-IPO审核信息-科创板
-- 东方财富网-数据中心-新股数据-IPO审核信息-创业板
-- 东方财富网-数据中心-新股数据-IPO审核信息-上海主板
-- 东方财富网-数据中心-新股数据-IPO审核信息-深圳主板
-- 东方财富网-数据中心-新股数据-IPO审核信息-北交所
-- 东方财富网-数据中心-新股数据-注册制审核-达标企业
-- 东方财富网-数据中心-新股数据-增发-全部增发
-- 东方财富网-数据中心-新股数据-配股
-- 东方财富网-数据中心-股票回购-股票回购数据
-- 东方财富网-数据中心-大宗交易-市场统计
-- 东方财富网-数据中心-大宗交易-每日明细
-- 东方财富网-数据中心-大宗交易-每日统计
-- 东方财富网-数据中心-大宗交易-活跃 A 股统计
-- 东方财富网-数据中心-大宗交易-活跃营业部统计
-- 东方财富网-数据中心-大宗交易-营业部排行
-- 东方财富网-数据中心-特色数据-一致行动人
-- 融资融券-标的证券名单及保证金比例查询
-- 东方财富网-数据中心-融资融券-融资融券账户统计-两融账户信息
-- 上海证券交易所-融资融券数据-融资融券汇总数据
-- 上海证券交易所-融资融券数据-融资融券明细数据
-- 深圳证券交易所-融资融券数据-融资融券汇总数据
-- 深证证券交易所-融资融券数据-融资融券交易明细数据
-- 深圳证券交易所-融资融券数据-标的证券信息
-- 东方财富网-数据中心-研究报告-盈利预测; 该数据源网页端返回数据有异常, 本接口已修复该异常
-- 经济通-公司资料-盈利预测
-- 同花顺-盈利预测
-- 东方财富网-行情中心-沪深京板块-概念板块
-- 东方财富-沪深板块-概念板块-板块成份
-- 东方财富-沪深板块-概念板块-历史行情数据
-- 东方财富-沪深板块-概念板块-分时历史行情数据
-- 富途牛牛-主题投资-概念板块-成分股
-- 同花顺-同花顺行业一览表
-- 同花顺-板块-行业板块-指数日频率数据
-- 东方财富-沪深京板块-行业板块
-- 东方财富-沪深板块-行业板块-板块成份
-- 东方财富-沪深板块-行业板块-历史行情数据
-- 东方财富-沪深板块-行业板块-分时历史行情数据
-- 雪球-沪深股市-热度排行榜-关注排行榜
-- 雪球-沪深股市-热度排行榜-讨论排行榜
-- 雪球-沪深股市-热度排行榜-交易排行榜
-- 问财-热门股票排名数据; 请注意访问的频率
-- 东方财富网站-股票热度
-- 东方财富-个股人气榜-飙升榜
-- 东方财富-个股人气榜-人气榜-港股市场
-- 东方财富网-股票热度-历史趋势及粉丝特征
-- 东方财富网-股票热度-历史趋势
-- 互动易-提问
-- 互动易-回答
-- 上证e互动-提问与回答
-- 东方财富网-个股人气榜-实时变动
-- 东方财富网-个股人气榜-实时变动
-- 东方财富-个股人气榜-热门关键词
-- 雪球-行情中心-沪深股市-内部交易
-- 东方财富-个股人气榜-最新排名
-- 东方财富-个股人气榜-最新排名
-- 百度股市通-热搜股票
-- 东方财富-个股人气榜-相关股票
-- 东方财富-行情中心-盘口异动数据
-- 东方财富-行情中心-当日板块异动详情
-- 东方财富网-行情中心-涨停板行情-涨停股池
-- 东方财富网-行情中心-涨停板行情-昨日涨停股池
-- 东方财富网-行情中心-涨停板行情-强势股池
-- 东方财富网-行情中心-涨停板行情-次新股池
-- 东方财富网-行情中心-涨停板行情-炸板股池
-- 东方财富网-行情中心-涨停板行情-跌停股池
-- 乐咕乐股网-赚钱效应分析数据
-- 同花顺-数据中心-技术选股-持续放量
-- 同花顺-数据中心-技术选股-持续缩量
-- 同花顺-数据中心-技术选股-向上突破
-- 同花顺-数据中心-技术选股-向下突破
-- 同花顺-数据中心-技术选股-量价齐升
-- 同花顺-数据中心-技术选股-量价齐跌
-- 同花顺-数据中心-技术选股-险资举牌
-- 新浪财经-ESG评级中心-ESG评级-ESG评级数据
-- 新浪财经-ESG评级中心-ESG评级-MSCI
-- 新浪财经-ESG评级中心-ESG评级-路孚特
-- 新浪财经-ESG评级中心-ESG评级-秩鼎
-- 新浪财经-ESG评级中心-ESG评级-华证指数
```
## Tools
You have access to a wide variety of tools. You are responsible for using
the tools in any sequence you deem appropriate to complete the task at hand.
This may require breaking the task into subtasks and using different tools
to complete each subtask.
You have access to the following tools:
{tool_desc}
## Output Format
To answer the question, please use the following format.
```
Thought: I need to use a tool to help me answer the question.
Action: tool name (one of {tool_names}) if using a tool.
Action Input: the input to the tool, in a JSON format representing the kwargs (e.g. {{"input": "hello world", "num_beams": 5}})
```
Please ALWAYS start with a Thought.
Please use a valid JSON format for the Action Input. Do NOT do this {{'input': 'hello world', 'num_beams': 5}}.
If this format is used, the user will respond in the following format:
```
Observation: tool response
```
You should keep repeating the above format until you have enough information
to answer the question without using any more tools. At that point, you MUST respond
in the one of the following two formats:
```
Thought: I cannot answer the question with the provided tools.
Answer: Sorry, I cannot answer your query.
```
"""
react_system_prompt = PromptTemplate(react_system_header_str)
agent.update_prompts({"agent_worker:system_prompt": react_system_prompt})
agent.reset()
6、问答开始
response = agent.chat(
"""
分析当前股票市场的整体情况。请提供相关函数名称列表。
请遵循以下指引:
1. **步骤分解**:
- 根据函数示例代码功能描述,将分析过程分解为几个关键步骤。
- 获取函数名称,并在akshare工具中找到相应的接口示例。
2. **工具使用**:
- 每个步骤都必须使用akshare工具中的相关功能。
- 确保工具的使用符合用户的需求和问题的背景。
3. **代码示例**:
- 提供每个步骤的接口示例代码。
- 确保代码示例直接来自akshare的技术文档。
- 示例应包含必要的上下文和注释,以便用户理解其用途。
"""
)
print(response.response)
运行日志
> Running step 622ae738-65f6-4828-be4c-fcb29371b493. Step input: 分析当前股票市场的整体情况。请提供相关函数名称列表。 请遵循以下指引: 1. **步骤分解**: - 根据函数示例代码功能描述,将分析过程分解为几个关键步骤。 - 获取函数名称,并在akshare工具中找到相应的接口示例。 2. **工具使用**: - 每个步骤都必须使用akshare工具中的相关功能。 - 确保工具的使用符合用户的需求和问题的背景。 3. **代码示例**: - 提供每个步骤的接口示例代码。 - 确保代码示例直接来自akshare的技术文档。 - 示例应包含必要的上下文和注释,以便用户理解其用途。 Thought: 我需要列出一些函数来帮助用户分析当前股票市场的整体情况。这些函数可以从akshare技术文档中找到。 Action: akstock Action Input: {'input': '获取市场总貌'} Observation: 根据提供的信息,没有直接的方法或接口明确列出用于获取市场总貌的具体数据或服务。提供的信息包括股票行业的市盈率查询接口和港股的实时行情数据接口,但这些主要用于特定类型的数据检索而非全面的市场总貌。因此,对于如何具体获取市场总貌的信息,当前上下文中未提供足够的细节。 > Running step 81fb6485-ed38-4980-aecc-e09d7d329804. Step input: None Thought: 我需要更具体地列出一些函数来帮助用户分析当前股票市场的整体情况。这些函数可以从akshare技术文档中找到。 Action: akstock Action Input: {'input': '市场总貌和股票数据'} Observation: 根据提供的数据,我们可以观察到市场总貌和股票的具体数据。 对于股票市场资金流动情况,可以看到不同日期上证指数的收盘价、涨跌幅以及中单和小单的净流入情况。例如,在2024年2月23日,上证指数的收盘价为3004.88,上涨了0.55%;而小单净流入的净额为5.147947亿,净占比为0.56。 在板块行业总结方面,可以看到不同板块的涨跌幅、总成交量、总成交额等信息。例如,传媒板块在某个时间点的涨跌幅为6.17%,总成交量为3737.04,总成交额为278.19亿。领涨股是旗天科技,最新价为4.54,涨跌幅为20.11%。 这些数据可以帮助我们了解市场的整体表现和特定板块的表现。 > Running step 5e692cdb-588a-4081-8d73-7d2482f9718d. Step input: None Observation: Error: Could not parse output. Please follow the thought-action-input format. Try again. > Running step 0abf42be-d3e9-4437-b4fd-e51ff1ebd319. Step input: None Thought: 我需要更具体地列出一些函数来帮助用户分析当前股票市场的整体情况。这些函数可以从akshare技术文档中找到。 Action: akstock Action Input: {'input': '市场总貌和股票数据'} Observation: 根据提供的数据,我们可以观察到市场总貌和股票数据的一些特征。 对于股票市场资金流向: - 数据展示了不同日期的上证指数的收盘价、涨跌幅以及中单和小单的净流入情况。 - 例如,在2024年2月23日,上证指数的收盘价为3004.88,上涨了0.55%。同时,小单净流入为5.147947亿,占比较高。 对于板块行业总结: - 数据列出了不同板块的涨跌幅、总成交量、总成交额等信息。 - 例如,传媒板块在某个时间点的涨跌幅为6.17%,总成交量为3737.04,总成交额为278.19。该板块领涨股是旗天科技,最新价为4.54,涨幅达到20.11%。 这些数据可以帮助我们了解市场的整体表现和特定板块的表现。 > Running step 125a502f-5098-4456-af73-4afc356b3116. Step input: None Thought: 为了分析当前股票市场的整体情况,我们需要列出一些具体的函数名称,这些函数可以从akshare技术文档中找到,以帮助用户获取市场总貌和股票数据。 Action: akstock Action Input: {'input': '市场总貌和股票数据'} Observation: 根据提供的数据,我们可以观察到市场总貌和股票的具体数据。 对于股票市场资金流动情况,可以看到不同日期上证指数的收盘价、涨跌幅以及中单和小单的净流入情况。例如,在2024年2月23日,上证指数的收盘价为3004.88,上涨了0.55%;而小单净流入的净额为5.147947亿,净占比为0.56。 在板块行业总结方面,可以看到不同板块的涨跌幅、总成交量、总成交额等信息。例如,传媒板块在某个时间点的涨跌幅为6.17%,总成交量为3737.04,总成交额为278.19亿;领涨股是旗天科技,最新价为4.54,涨跌幅为20.11%。 这些数据可以帮助我们了解市场的整体表现和具体股票或板块的表现。 > Running step fa1920df-a639-4ce7-ac25-094a954a753f. Step input: None Thought: 为了帮助用户分析当前股票市场的整体情况,我们可以列出一些相关的函数名称。这些函数可以从akshare技术文档中找到,以提供市场总貌和股票数据的相关信息。 以下是几个相关的函数名称: 1. `stock_szse_sector_summary()`:获取深圳证券交易所的市场总貌数据,包括证券类别统计等。 2. `stock_board_concept_summary()`:获取概念板块的市场总貌数据,包括涨跌幅、总成交量、总成交额等。 3. `stock_board_industry_summary_ths()`:获取行业板块的市场总貌数据,包括涨跌幅、总成交量、总成交额等。 4. `stock_zh_a_daily(symbol='sh600000')`:获取特定股票的日频率数据,包括成交量和最新价等信息,帮助分析价格走势和成交量的变化。 这些函数提供了丰富的市场信息,可以帮助用户全面了解当前股票市场的状况。 Action: akstock Action Input: {'input': '市场总貌和股票数据'} Observation: 根据提供的数据,我们可以观察到市场总貌和股票的具体数据。 对于股票市场资金流动情况,可以看到不同日期上证指数的收盘价、涨跌幅以及中单和小单的净流入情况。例如,在2024年2月23日,上证指数的收盘价为3004.88,上涨了0.55%;而小单净流入金额为5.147947亿,净占比为0.56。 在板块行业总结方面,可以看到不同板块的涨跌幅、总成交量、总成交额等信息。例如,传媒板块在某个时间点的涨跌幅为6.17%,总成交量为3737.04,总成交额为278.19亿。领涨股是旗天科技,最新价格为4.54,涨幅达到20.11%。 这些数据可以帮助我们了解市场的整体表现和特定板块的表现。 > Running step 404cf411-78a0-414f-b553-fcb88ddd60d8. Step input: None Thought: 为了帮助用户分析当前股票市场的整体情况,我们可以列出一些相关的函数名称。这些函数可以从akshare技术文档中找到,以提供市场总貌和股票数据的相关信息。 以下是几个相关的函数名称: 1. `stock_szse_sector_summary()`:获取深圳证券交易所的市场总貌数据,包括证券类别统计等。 2. `stock_board_concept_summary()`:获取概念板块的市场总貌数据,包括涨跌幅、总成交量、总成交额等。 3. `stock_board_industry_summary_ths()`:获取行业板块的市场总貌数据,包括涨跌幅、总成交量、总成交额等。 4. `stock_zh_a_daily(symbol='sh600000')`:获取特定股票的日频率数据,包括成交量和最新价等信息,帮助分析价格走势和成交量的变化。 这些函数提供了丰富的市场信息,可以帮助用户全面了解当前股票市场的状况。 Answer: 以下是一些用于分析当前股票市场的整体情况的函数名称: 1. `stock_szse_sector_summary()` 2. `stock_board_concept_summary()` 3. `stock_board_industry_summary_ths()` 4. `stock_zh_a_daily(symbol='sh600000')`:获取特定股票的日频率数据,包括成交量和最新价等信息,帮助分析价格走势和成交量的变化。