
LLMs应用笔记
文章平均质量分 93
余生H
I AM A I,身上的刺蜕了,只想静静欣赏世界的美。前端、Nodejs后端、容器化云原生、LLMs、CV
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Web前端大模型实战:端侧翻译+朗读流程线+模型音频数据编码 - 让网站快速支持多语言多模态输出
本文介绍了如何通过端侧大模型技术实现网页端的实时翻译与语音合成功能,无需服务器参与即可为网站添加多语言多模态输出能力。文章详细解析了技术架构,包括核心组件和关键技术栈,如翻译模型、TTS模型、WASM运行时和音频编码。代码实现部分展示了基础框架和模型初始化,并详细说明了翻译模块和语音合成模块的核心流程。此外,文章还提供了性能优化与实践建议,如模型加载策略、内存管理和音频缓存。最后,文章总结了该技术的应用场景扩展,包括多语言博客系统、跨境电商商品描述等,并强调了纯前端多语言支持、多模态输出能力和数据隐私保障等原创 2025-05-23 16:05:11 · 1583 阅读 · 0 评论 -
Transformer.js(六): 内置模型处理工具介绍
Processors是中用于数据预处理和后处理的模块。它们针对不同任务设计,能够处理非结构化数据(如音频、图像等),并将其转化为适合 Transformer 模型输入的标准格式。此外,部分 Processors 还支持对模型输出的后处理功能,例如将分割结果格式化为人类可读的图像标注。预处理:将原始输入数据规范化、特征提取或转换为模型需要的格式。后处理:对模型生成的结果进行优化,例如语义分割图、目标框的绘制等。以下是 Processors 提供的主要组件分类及其功能。原创 2024-11-25 17:02:31 · 1695 阅读 · 0 评论 -
Transformer.js(五) — Tokenizer 分词器接口解析 - 数据输入的咀嚼器
在 Transformer.js 中,tokenizer 主要用于将文本转化为模型所需的格式。它通过将自然语言转化为 ID 数组,使模型可以处理输入数据。以 Hugging Face 的');// 结果:Tensor {// }在这个示例中,可以根据模型名称自动选择适合的 tokenizer,并将输入句子 “I love transformers!” 转化为 token IDs。原创 2024-11-25 09:35:17 · 1301 阅读 · 0 评论 -
即时可玩web小游戏(一):俄罗斯方块 - 集成InsCode快来阅读并即时体验吧~
这是一个使用纯HTML、CSS和JavaScript实现的经典俄罗斯方块游戏。游戏完整实现了俄罗斯方块的核心玩法,包括方块移动、旋转、消行、计分等功能,并加入了暂停功能来提升游戏体验。[[1,1,1,1]], // I形[[1,1,1],[0,1,0]], // T形[[1,1,1],[1,0,0]], // L形[[1,1,1],[0,0,1]], // J形[[1,1],[1,1]], // O形[[0,1,1],[1,1,0]], // S形[[1,1,0],[0,1,1]] // Z形。原创 2024-11-01 18:17:21 · 1537 阅读 · 0 评论 -
大模型代码能力体验报告之贪吃蛇小游戏《二》:Claude.ai篇 - 生成、预览和快速部署的serverless一条龙 - 非技术人员的最强前端开发IDE?
Claude.ai与其说是一个代码辅助工作,不如说是一个serverless平台,可以高效的生成和部署组件。支持多框架的预览和部署,功能强悍,并进行共享,希望国内厂商也跟进下吧。原创 2024-10-29 10:30:00 · 1148 阅读 · 0 评论 -
大模型代码能力体验报告之贪吃蛇小游戏《一》:OpenAI-Canvas-4o篇 - 功能简洁的文本编辑器外一点提示词语法糖功能
OpenAI的Canvas添加了一些提示词语法糖的功能,表现还可以,但缺少直接预览等功能,适合一般使用,但对完全的新人肯定不太好的,毕竟缺少可见即可的效果。原创 2024-10-28 15:01:33 · 483 阅读 · 0 评论 -
大模型进阶微调篇(三):在个人电脑上微调GPT2大模型实战
GPT-2 是由 OpenAI 开发的生成式预训练 Transformer的第二代版本,拥有 1.5 亿参数,具备了生成高质量自然语言的能力,非常适合个人使用,本文就在一台集显设备上对齐进行了微调实验,希望大家跟着练习掌握微调的原理,以便继续后面的深入学习原创 2024-10-25 14:49:49 · 2411 阅读 · 0 评论 -
大模型进阶微调篇(二):基于人类反馈的强化学习RLHF原理、优点介绍,但需要警惕LLMs的拍马屁行为
利用人类偏好反馈可以有效地训练复杂的深度强化学习模型,且在某些任务上甚至能超过传统RL算法的效果。未来的研究可能会进一步提高反馈利用的效率,并探索更多没有明确奖励信号的实际应用场景。但是也需要警惕风险,不要轻易让大模型帮忙做决策,除非明确指出了要求其两面性的分析。原创 2024-10-24 14:39:54 · 1768 阅读 · 0 评论 -
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
如果你想要快速、高效地对模型进行微调,且用户反馈较为简单(例如只选择最佳答案),LoRA是一个不错的选择。如果你需要在复杂的交互环境中不断优化模型性能,且用户能够提供详细的反馈(如评分),那么PPO是更合适的选择。当数据规模较小时,LoRA 更加高效;而在数据规模较大时,PPO 更能发挥其优势。根据数据规模(1k-10k、10k-50k、50k+),选择合适的微调方法可以最大化地提高模型的性能和训练效率。原创 2024-10-18 15:46:59 · 2337 阅读 · 0 评论 -
前端大模型入门:Langchain的不同文本分割器对比和效果展示-教你根据场景选出最合适的方式
在前端开发大模型应用的时候,处理和分割文本是常见需求,毕竟现在的大模型输入输出都有限-嵌入等也是有token限制的,合理的文本分割能显著提高模型的表现。本文从原理、优缺点和适用场景等多个维度进行分析,帮助你选出最合适当前续期的文本分割器。原创 2024-10-10 15:33:11 · 1887 阅读 · 0 评论 -
端侧大模型应用:如何在资源受限例如1核和1G内存的设备上运行一个合适的向量存储库及如何优化
在资源受限的1核1G内存设备上运行向量存储库是一项挑战,但通过选择合适的工具和采取适当的优化策略,我们可以实现高效的向量存储和检索。端侧一般是用来实时收集数据的,如果能够本地过滤、总结、筛选等处理是能够很大程度上减少成本的,尤其是运动的设备上(会时不时进入网络很差或者没网络的区域)。未来,我们可以期待看到更多专为这类场景优化的算法和工具的出现,以及硬件技术的进步带来的新可能性。在实际应用中,建议根据具体的使用场景、数据特征和性能需求,选择最适合的解决方案,并通过持续的测试和优化来达到最佳效果。原创 2024-10-10 11:00:30 · 1739 阅读 · 0 评论 -
前端大模型入门:实战篇之Vue3+Antdv+transformers+本地模型实现增强搜索
本文将结合之前的文章,实现一个场景的实战应用,项目代码开发。利用纯前端实现增强的列表搜索,抛弃字符串匹配,目标是使用番茄关键字可以搜索到西红柿。原创 2024-09-29 12:16:53 · 2784 阅读 · 0 评论 -
前端大模型入门:使用Transformers.js手搓纯网页版RAG(二)- qwen1.5-0.5B - 纯前端不调接口
书接上文,本文完了RAG的后半部分,在浏览器运行qwen1.5-0.5B实现了增强搜索全流程。但受限于浏览器和模型性能,仅适合于研究、离线和高隐私场景,但对前端小伙伴来说大模型也不是那么遥不可及了,附带全部代码,动手试试吧!原创 2024-09-28 11:07:50 · 1533 阅读 · 1 评论 -
前端大模型入门:使用Transformers.js实现纯网页版RAG(一)
我将教你如何构建一个运行在浏览器的RAG系统,本文先介绍前部分-增强搜索的实现原理,记得参考代码跑一下哈原创 2024-09-27 18:12:54 · 2123 阅读 · 0 评论 -
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
通过学会Transformer.js 和 Xenova系列模型,学会如何在网页中运行大模型吧原创 2024-09-27 09:56:57 · 4790 阅读 · 0 评论 -
最新llama3.2小参数版本1B的古董机测试 - 支持128K上下文,表现优异,和移动端更配
Llama3.2新版本推出,很多人都关注它的多模态,但最小的1B却吸引了我的注意力,小小的它,蕴含了不少的威力!或许是移动端大模型应用的一个起点原创 2024-09-26 15:16:55 · 2731 阅读 · 0 评论 -
前端大模型入门:编码(Tokenizer)和嵌入(Embedding)解析 - llm的输入
大模型并不能直接理解文字等数据,所以需要利用编码+嵌入.本文利用两个js库来介绍了对比了二者的作用,看完立刻试试吧原创 2024-09-21 21:13:15 · 3520 阅读 · 0 评论 -
两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
两个无关的指令,交换顺序,Claude-Sonnet3.5就无法理解,这究竟是它太弱鸡,还是隐藏着其它秘密?这个本文倒没有研究!而是说说我怎么临时解决这个问题的吧原创 2024-09-20 09:03:01 · 1036 阅读 · 0 评论