大数据指数据与大数据技术这二者的综合,而大数据技术,是指伴随着大数据的采集、传输、处理和应用的相关技术,通过一系列非传统的工具来对大量的结构化、半结构化和非结构化数据进行处理,从而获得分析和预测结果的一系列数据处理和分析技术。
大数据关键技术的不同层面及其功能
数据采集
利用ETL工具将分布的、异构数据源中的数据抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础;也可以把实时采集的数据作为流计算系统的输入,进行实时处理分析。
数据存储和管理
利用分布式文件系统、数据仓库、关系数据库、NoSQL数据库、云数据库等实现对结构化、半结构化和非结构化海量数据的存储和管理。
数据处理与分析
利用分布式并行编程模型和计算框架,结合机器学习和数据挖掘算法,实现对海量数据的处理和分析;对分析结果进行可视化呈现,帮助人们更好地理解、分析数据。
数据安全和隐私保护
构建隐私保护体系和数据安全体系,保护个人隐私和数据安全。
大数据计算模式
批处理计算
针对大规模数据的批量处理。
MapReduce可以并行执行大规模数据处理任务,用于大规模数据集的并行运算(单输入、两阶段、粗粒度数据并行的分布式框架)。它将复杂的、运行于大规模集群上的并行计算过程高度抽象到了两个函数——Map和Reduce,并把一个大数据集切分成多个小数据集,分布到不同的机器上进行并行处理,极大地方便了分布式编程工作。在MapReduce中,数据流从一个稳定的来源,进行一系列加工处理后,流出到一个稳定的文件系统(如HDFS