最近公共祖先(LCA)
LCA问题:在有根树中,找出某两个结点 u 和 v 最近的公共祖先
算法:倍增法(大的不行试小的,小的不行试更小的)
算法思想:分治。
算法流程当已知两个点在树中的深度时,先让较深的结点向上走,直到两个结点深度一样;二分找出离他们最近的公共祖先。我们记一个结点的父结点为它的2^0=1倍祖先,它的父结点的父结点为它的2^1=2倍祖先,以此类推。接下来开始描述倍增算法的具体流程。
1.:在树上预处理每个结点的深度和0倍祖先,也就是每个结点的父结点。用 d 数组来表示每个结点的深度, p[v][h] 表示结点v的h倍祖先的结点编号。 d 数组中的元素初始为 -1。初始化完成后,p[a][0]保存的是a的第 2^0=1 倍祖先结点,即它的父结点。时间复杂度O(V)
2.:倍增计算各个点的2^j祖先是谁,其中,1倍祖先就是父亲,2倍祖先是父亲的父亲,以此类推。该点2^j祖先也就是该点2^j-1祖先的2^j-1祖先。在这一步中,2^level 表示的是祖先的倍数。很显然i,2^j的 倍祖先就是i的2^j-1祖先的2^j-1祖先。时间复杂度为O(VlogV)。
3.第三步(查询):首先,深度大的点往上爬,直到与深度小的点在同一层。若此时两结点相同直接返回此结点,即最近公共祖先 LCA。这意味着其中一个结点是另一个结点的祖先结点。
否则,利用倍增思想,同时让x和y二分地向上找,直到找到深度相等且最小的x和y的祖先x’,y’满足x’!=y’ 。此时他们的父结点p[x’][0]即为x和y的最近公共祖先 LCA。
用我的语言大致说一下算法流程:
1.链式前向星存储结构
2.dfs函数结合链式前向星来把每个点的深度值(d[i])和首个父节点(fa[i][0])赋好值。递归思想。
3.lca函数是算法的关键,先让更深的那个x通过“倍增法”(就是用二进制的思维,以1,2,4,8等2的阶层步长接近答案,比一步一步向上要快很多)从大到小来向上跳(只要当前d[x]加上(1<<j)不高于y则可以跳),根据二进制的性质(可以组成你想要的任何数字),最后一定有:d[x]=d[y] ,二者达到同一层。若x==y那么最大公共祖先即y。否则,再用“倍增法”让x和y从大到小同时向上跳,(条件:二者跳上去到达的点不相同!对于这个条件可以巧妙满足①解决跳上去的点不存在的问题(初始化由5定义),这样二者到达的点会相同的。②解决最后要求“最近”的问题。)。
理解见图viahttp://www.cnblogs.com/yyf0309/p/5972701.html)
那么最后找到二者的父节点,返回fa[x][0],即是最近公共祖先。
4.涉及输入:用一个isleave数组来辅助,对于每次输入都让其终点的该值为1,因为有向图嘛,所以根节点不会当成终点被指向,所以遍历一遍找到isleave值不为1的那个就是根节点,设根节点的深度d[root]=1,然后对根节点进行dfs函数。
5.有个关键的初始化:fa[i][level]=fa[fa[i][level-1]][level-1],就是说因为这里我们有个默认定义是“fa[i][level]是第i个结点的第2^level个父节点”,那么也就是第i个结点的第2^(level-1)个父节点的2^(level-1)个父节点。(因为2^(level-1)+2^(level-1)=2^level)
所以这里为了方便,直接用两层循环,外层是level从1到最大层数(二叉树),内层是对每个节点i。由此对于fa[i][level]进行初始化。
6.最后,直接调用lca(x,y)就可以返回得到x和y的最近公共祖先。
算法模板:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int MAX_N=100000;
const int MAX_M=1000000;
int isleave[100050];
struct edge{
int v,next;
}E[MAX_M];
int p[MAX_N],eid;
void init(){
memset(p,-1,sizeof(p));
memset(isleave,0,sizeof(isleave));
eid=0;
}
void insert(int u,int v){
E[eid].v=v;
E[eid].next=p[u];
p[u]=eid++;
}
int d[MAX_N],fa[MAX_N][20];
void dfs(int u){
for(int i=p[u];i!=-1;i=E[i].next){
if(d[E[i].v]==-1){
d[E[i].v]=d[u]+1;
fa[E[i].v][0]=u;
dfs(E[i].v);
}
}
}
int lca(int x,int y){
int i,j;
if(d[x]<d[y]){
swap(x,y);
}
for(i=0;(1<<i)<=d[x];i++);
i--;
for(j=i;j>=0;j--){
if(d[x]-(1<<j)>=d[y]){
x=fa[x][j];
}
}
if(x==y){
return x;
}
for( j=i;j>=0;j--)
{
if(fa[x][j]!=fa[y][j]){
x=fa[x][j];
y=fa[y][j];
}
}
return fa[x][0];
}
int main() {
int n;
init();
cin>>n;
for(int i=0;i<n-1;i++)
{
int u,v;
cin>>u>>v;
insert(u,v);
insert(v,u);
isleave[v]=1;
}
memset(d,-1,sizeof(d));
int root;
for(int i=1;i<=n;i++)
{
if(isleave[i]==0){
root=i;
break;
}
}
d[root]=1;
dfs(root);
for(int level=1;(1<<level)<=n;level++){
for(int i=1;i<=n;i++){
fa[i][level]=fa[fa[i][level-1]][level-1];
}
}
int q;
cin>>q;
while(q--){
int a,b;
cin>>a>>b;
cout<<lca(a,b)<<endl;
}
return 0;
}
当然,这个方法适用于要查询多次,可以简化时间复杂度。(不过呢也是一种“在线算法”)。
而如果只是查询一次,不用考虑那么多时间复杂度,那完全就可以暴力找相同啊!代码:
class LCA {
public:
int getLCA(int a, int b) {
// write code here
if (a == b)
return a;
return a>b? getLCA(a/2, b): getLCA(a, b/2); //每除以二,就是找它的父节点。
}
};