数学
crb_day_day_up
这个作者很懒,什么都没留下…
展开
-
理解泰勒级数
即: 一阶泰勒展开:另外:原创 2018-08-16 21:36:09 · 1089 阅读 · 0 评论 -
AUC评价指标的理解以及其为何能衡量二分类模型优劣——复习篇
AUC是衡量二分类模型优劣的一种评价指标,其他评价指标有精确度、准确率、召回率,而AUC比这三者更为常用。因为一般在分类模型中,预测结果都是以概率的形式表现,如果要计算准确率,通常都会手动设置一个阈值来将对应的概率转化成类别,这个阈值也就很大程度上影响了模型准确率的计算。AUC能很好描述模型整体性能的高低。从一定程度上讲,它可以描述预测结果中正例排在负例前面的概率。AUC(Area under...原创 2018-08-26 11:15:12 · 5150 阅读 · 1 评论 -
SVM中对偶问题的理解——复习篇
近段复习到SVM,对SVM中的对偶问题又进行了进一步的理解:对于为什么要引入对偶问题:这涉及到凸优化的知识:首先是我们有不等式约束方程,这就需要我们写成min max的形式来得到最优解。而这种写成这种形式对x不能求导,所以我们需要转换成max min的形式,这时候,x就在里面了,这样就能对x求导了。而为了满足这种对偶变换成立,就需要满足KKT条件(KKT条件是原问题与对偶问题等价的必要条件...原创 2018-08-19 20:18:37 · 2102 阅读 · 0 评论 -
理解:L1正则先验分布是Laplace分布,L2正则先验分布是Gaussian分布——复习篇
L1、L2正则化来源推导L1L2的推导可以从两个角度:带约束条件的优化求解(拉格朗日乘子法) 贝叶斯学派的:最大后验概率1.1 基于约束条件的最优化对于模型权重系数w的求解释通过最小化目标函数实现的,也就是求解:首先,模型的复杂度可以用VC来衡量。通常情况下,模型VC维与系数w的个数成线性关系:即:w数量越多,VC越大,模型越复杂为了限制模型的复杂度,我们要降低V...原创 2018-08-28 14:50:03 · 21166 阅读 · 8 评论 -
PCA理解——复习篇
复习到特征工程,联想到了PCA,就小结一下:1、核心:PCA的思想是基于最大方差理论(某一维方差越大代表了包含了原始数据的绝大部分信息,这也可以从信息论的角度理解,信息熵),将n维特征映射到k维上(k<n),这k维是全新的正交特征。注意:这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。2、数学上的推导:补充: ...原创 2018-08-22 00:13:29 · 353 阅读 · 0 评论