Tensorflow-CNN应用于MNIST数据集分类

深度学习框架Tensorflow学习与应用实战 

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#读取数据集MNIST
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)

#每个批次的大小
batch_size=100
#计算一共有多少个批次(整除)
n_batch=mnist.train.num_examples//batch_size

#初始化权值
def weight_variable(shape):
    initial=tf.truncated_normal(shape,stddev=0.1)#生成一个截断的正态分布
    return tf.Variable(initial)

#初始化偏置值
def bias_variable(shape):
    initial=tf.constant(0.1,shape=shape)#初始化为0.1
    return tf.Variable(initial)

#卷积层
def conv2d(x,W):
    #x input tensor of shape '[batch,in_height,in_width,in_channels]' -->分别为:批次、图片高、图片宽、图片通道
    #W filter/kernel tensor of shape [filter_height,filter_width,in_channels,out_channels]
    #strides[0]=strides[3]=1(一般都是这样写),strides[1]代表x方向的步长,strides[2]代表y方向的步长
    #padding :A string from :"SAME","VALID" "SAME":代表填充(卷积后规格大小不变),"VALID":代表不填充
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

#池化层
def max_pool_2x2(x):
    #ksize [1,x,y,1]  x*y表示窗口的大小
    #strides[1]:代表x方向步长、strides[2]:代表y方向步长
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#定义两个placeholder
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])

#改变x的格式转为4D的向量[batch,in_height,in_width,in_channels]
x_image=tf.reshape(x,[-1,28,28,1])

#初始化第一个卷积层的权值和偏置值
W_conv1=weight_variable([5,5,1,32])#5*5的采样窗口,32个卷积核从1个平面抽取特征,产生32个特征平面
b_conv1=bias_variable([32])#每个卷积核一个偏置值

#把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)#进行最大池化

#初始化第二个卷积层的权值和偏置值
W_conv2=weight_variable([5,5,32,64])#5*5的采样窗口,64个卷积核从32个特征平面抽取特征(每个卷积核对32个特征平面卷积,再将对应位置相加形成一个特征平面),产生64个特征平面
b_conv2=bias_variable([64])#每个卷积核一个偏置值

#把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)#进行最大池化

#28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
#第二次卷积后为14*14,第二次池化后变为7*7
#进行上面操作后得到64张7*7的平面

#初始化第一个全连接层的权值
W_fc1=weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元
b_fc1=bias_variable([1024])#1024个节点

#把池化层2的输出扁平化为1维,-1代表批次规格
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

#keep_prob用来表示神经元的输出概率
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

#初始化第二个全连接层
W_fc2=weight_variable([1024,10])#上一层有1024个神经元,全连接层有10个神经元
b_fc2=bias_variable([10])#10个节点

#计算输出
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)

#交叉熵代价函数的平均值
cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#Adam优化器 学习率:0.01或者1e-2:代表10的-2次方
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔列表中
correct_prediction=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))#argmax返回一维张量中最大数额位置
#求准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())#初始化变量
    for epoch in range(21):
        # 对所有图片分批训练一次
        for batch in range(n_batch):
            # 获取一批(100个)样本图片,batch_xs:图片信息,batch_ys:图片标签
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            # 利用训练图片信息及对应标签,梯度下降法训练模型,得到权重W及b
            sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys,keep_prob:0.7})

        # 利用测试集进行测试该迭代时模型的准确率
        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels,keep_prob:1.0})
        # 打印迭代次数及对应准确率
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

运行结果:电脑太渣,实在运行不了~~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值