机器学习 -- KNN算法(Ⅸ 查看分类的准确率--自定义实现和sklearn实现)

本文通过两个案例展示了如何计算KNN算法的分类准确率。案例1介绍了使用自编的分类器和切分函数计算准确率,案例2则利用sklearn库进行计算,结果显示两者得出的准确率接近。
摘要由CSDN通过智能技术生成

案例1:根据自己编写的分类器和切分函数计算分类的准确率。

新建一个matrics.py,将计算预测准确度封装成一个函数get_accuracy:

import numpy as np


def get_accuracy(y_test, y_predict):
    """
    计算预测值的准确度
    :param y_test: 分类结果的目标值
    :param y_predict: 算法预测的结果向量
    :return: 准确度比例
    """
    assert y_test.shape[0] == y_predict.shape[0], "预测值和目标值的大小必须相等"
    return sum(y_predict == y_test) / len(y_test)

在自己的分类器中添加一个计算分数的方法score:

class KNNClassifier:

    # 初始化KNN分类器
    def __init__(self, k):
        assert k >= 1, "k必须为合法值"
        self.k = k
        # 以_开头代表私有变量,外界不能访问
        self._X_train = None
        self._y_train = None

    def fit(self, X_train, y_train):
        """
        根据训练集训练分类器
        :param X_train: 用户传入的训练集特征值
        :param y_train: 用户传入的训练集目标值
        :return: 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值