机器学习 -- KNN算法(十二 使用sklearn进行数据归一化处理)

本文介绍了如何使用sklearn库对机器学习中的数据进行归一化处理,以提高KNN算法的效果。通过导入相关包,加载数据集,查看数据,切分数据,实例化Scalar对象进行训练,最后应用transform方法进行数据归一化。
摘要由CSDN通过智能技术生成

1. 对测试数据集归一化的方法

2. 使用sklearn中的Scalar

(1)导入需要的包:

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

(2)加载数据集,读取data和target作为X和y:

iris = datasets.load_iris()
X = iris.data
y = iris.target

(3)此时查看一下前10行内容:

(4)对数据集进行切分:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值