Python实现计算Levenshtein的距离相似度

本文深入探讨了Levenshtein距离,一种衡量两个字符串相似度的编辑距离算法。介绍了其定义,即通过最少的编辑操作(插入、删除、替换)将一个字符串转换为另一个字符串所需的步骤数。并提供了Python实现示例,展示了如何使用python-Levenshtein库计算两个字符串之间的Levenshtein距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Levenshtein 距离

1.定义

        Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。(即:插入、删除、替换)。

 

2.代码实现

(1)首先安装python-Levenshtein库,安装完使用import Levenshtein导入该库。

(2)定义两个字符串str1, str2,然后通过Levenshtein.distance(str1, str2) 计算编辑距离distance。

import Levenshtein

str1 = 'Mike'
str2 = 'Micheal'
distance = Levenshtein.distance(str1, str2)  # distance指编辑距离
print(distance)     # 4
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值