亚马逊的一道智力题,悬链线问题

本文讲述了亚马逊面试中出现的一道智力题——悬链线问题,通过数学建模来解决。当绳子中点离地面10m时,发现两柱子间距为0,揭示了有时过于复杂计算可能忽视问题本质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

亚马逊的一道智力题,悬链线问题


  感觉这阵子网上开始流传一道题,号称是亚马逊的面试题,问题挺有意思。大致是这样。

有一根无弹性的绳子,长度是80m,然后两端被挂在50m高的柱子上,问当绳子的中点离地面高度为10m的时候,两个柱子的间距是多少。

  很多人乍一看这个问题就知道这是一个悬链线问题。需要用悬链线公式来求解。悬链线公式是由约翰·伯努利求解出来。他的哥哥也是一个数学家,叫雅各比·伯努利。他的儿子也是数学家,叫丹尼·伯努利。这个约翰伯努利的故事非常多,尽管在数学上也还算有名,但是就让我觉得这是一个悲情的人物。
  伯努利的老师就是大名鼎鼎的微积分创始人之一,莱布尼茨。莱布尼茨和牛顿后来闹僵了,他苦心证明出最速下降曲线,想以此杀杀自己导师的竞争者牛顿的锐气。他自己花了很长的时间证明出来,大概有几个月那么多,然后把问题发给牛顿,牛顿没理他,他就开始嘲讽。这个时候,牛顿知道后怒了,看不起谁呢。晚上不睡觉了,整到凌晨四点,结果把问题就给整出来了,而且比它的证明更出色。
  伯努利辅导了一个贵族,这个贵族的名字叫洛必达,渴望在科学上有所造诣,但却实力平平。没有才华却架不住财气横溢,于是开始了自己有钱人解决问题的方式。他写信给约翰伯努利,大致意思就是你有我需要的才,我有你需要的财,我们做一笔交易……。因为伯努利恰巧要结婚,于是开始陆续向洛必达发一些自己的研究成果的信件。莱布尼茨知道之后,还有这好事?连忙问看还有需要吗,我这里还有一些其他的发现。后来洛必达把两个人成果汇总,发表出一本书,这本书的重要成果还包括微积分史上重要的一个法则,洛必达法则。再到后来,有人对这个法则补充了一些重要扩充,就是所谓的广义洛必达法则。这个有财但是资质平平的“数学家”也因此名垂科学史,做了一笔非常值得的交易。
  这个约翰伯努利,还借鉴自己的儿子的研究成果,想要出一本书,结果一发表,和他儿子讨论问题的那些人先坐不住了,知道谁才是发现者,开始抨击他。最后无奈只好撤稿,把成果归还给儿子,于是有了丹尼尔·伯努利的著作《Hydrodynamica》(流体力学)。
  但是他也有扬眉吐气的时候,好胜心很强的他一直想要证明自己比哥哥雅各比伯努利强,虽然大多数时候都没能如愿,但是在悬链线上确实雅各比犯了错误,而这个问题被约翰证明。自然也不会忘记拿这件事嘲讽自己的哥哥很久。
  悬链线问题,以绳子的最低点也就是中点为原点,水平方向为x轴建立坐标系,则绳子的曲线就是双曲余弦函数,表达式: y = a   c o s h ( d a ) − a y=a\ cosh(\frac{d}{a})-a y=a cosh(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值