【NOIP2014提高组】寻找道路

47 篇文章 13 订阅
24 篇文章 0 订阅

题目背景

NOIP2014 提高组 Day2 试题。

题目描述

在有向图 G 中,每条边的长度均为 1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 
1.路径上的所有点的出边所指向的点都直接或间接与终点连通。 
2.在满足条件 1 的情况下使路径最短。 
注意:图 G 中可能存在重边和自环,题目保证终点没有出边。 
请你输出符合条件的路径的长度。

输入格式

第一行有两个用一个空格隔开的整数 n 和 m,表示图有 n 个点和 m 条边。 
接下来的 m 行每行 2 个整数 x、y,之间用一个空格隔开,表示有一条边从点 x 指向点y。 
最后一行有两个用一个空格隔开的整数 s、t,表示起点为 s,终点为 t。

输出格式

输出只有一行,包含一个整数,表示满足题目描述的最短路径的长度。如果这样的路径不存在,输出 -1。

样例数据 1

输入

3 2 
1 2 
2 1 
1 3

输出

-1

样例数据 2

输入

6 6 
1 2 
1 3 
2 6 
2 5 
4 5 
3 4 
1 5

输出

3

备注

【样例1说明】

如上图所示,箭头表示有向道路,圆点表示城市。起点 1 与终点 3 不连通,所以满足题目描述的路径不存在,故输出 -1。

【样例2说明】

如上图所示,满足条件的路径为 1->3->4->5。注意点 2 不能在答案路径中,因为点 2 连了一条边到点 6,而点 6 不与终点 5 连通。

【数据说明】 
对于 30% 的数据,0<n≤10,0 <m≤20; 
对于 60% 的数据,0<n≤100,0 <m≤2000; 
对于 100% 的数据,0<n≤10,000,0<m≤200,000,0<x,y,s,t≤n,x≠t。

 

解析:

       题解是BFS,而我用的是另一种方法。

       如果没有限制一,那么就是一道最短路的板题,其实对于限制一,我们只需要将与出度为0且不是终点的点相连的点标记不能走,然后直接最短路,就可以了。为什么是对的?稍微画图想想你就明白了。

 

代码:

#include <bits/stdc++.h>
using namespace std;

const int Maxn=10005;
const int Maxm=200005;
const int inf=1e9;
int n,m,size,s,t;
int first[Maxn],First[Maxn],v[Maxn],pre[Maxn],dis[Maxn],to[Maxn],vis[Maxn];
struct shu{int to,next;};
shu edge[Maxm<<1],Edge[Maxm<<1];

inline int get_int()
{
	int x=0,f=1;
	char c;
	for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
	if(c=='-') f=-1,c=getchar();
	for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
	return x*f;
}

inline void build(int x,int y)
{
	edge[++size].next=first[x];
	first[x]=size;
	edge[size].to=y;
	Edge[size].next=First[y];
	First[y]=size;
	Edge[size].to=x;
}

inline void dfs(int point)
{
	for(int u=First[point];u;u=Edge[u].next)
	{
	  int to=Edge[u].to;
	  first[to]=0;
	}
}

inline void dijkstra()
{
	priority_queue<pair<int,int> >q;
	for(int i=1;i<=n;i++) dis[i]=inf;
	dis[s]=0,q.push(make_pair(0,s));
	while(q.size())
	{
	  int point=q.top().second;
	  q.pop();if(vis[point]) continue;vis[point]=1;
	  for(int u=first[point];u;u=edge[u].next)
	  {
	  	int to=edge[u].to;
	  	if(dis[to] > dis[point] + 1)
	  	{
	  	  dis[to]=dis[point]+1;
	  	  q.push(make_pair(-dis[to],to));
	  	}
	  }
	}
}

int main()
{
	n=get_int(),m=get_int();
	for(int i=1;i<=m;i++)
	{
	  int x=get_int(),y=get_int();
	  build(x,y),to[x]++;
	}
	s=get_int(),t=get_int();
	for(int i=1;i<=n;i++) if(!to[i] && i!=t) dfs(i);
	dijkstra();
	if(dis[t]==inf) cout<<"-1\n";
	else cout<<dis[t]<<"\n";
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值