题目背景
NOIP2014 提高组 Day2 试题。
题目描述
在有向图 G 中,每条边的长度均为 1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:
1.路径上的所有点的出边所指向的点都直接或间接与终点连通。
2.在满足条件 1 的情况下使路径最短。
注意:图 G 中可能存在重边和自环,题目保证终点没有出边。
请你输出符合条件的路径的长度。
输入格式
第一行有两个用一个空格隔开的整数 n 和 m,表示图有 n 个点和 m 条边。
接下来的 m 行每行 2 个整数 x、y,之间用一个空格隔开,表示有一条边从点 x 指向点y。
最后一行有两个用一个空格隔开的整数 s、t,表示起点为 s,终点为 t。
输出格式
输出只有一行,包含一个整数,表示满足题目描述的最短路径的长度。如果这样的路径不存在,输出 -1。
样例数据 1
输入
3 2
1 2
2 1
1 3
输出
-1
样例数据 2
输入
6 6
1 2
1 3
2 6
2 5
4 5
3 4
1 5
输出
3
备注
【样例1说明】
如上图所示,箭头表示有向道路,圆点表示城市。起点 1 与终点 3 不连通,所以满足题目描述的路径不存在,故输出 -1。
【样例2说明】
如上图所示,满足条件的路径为 1->3->4->5。注意点 2 不能在答案路径中,因为点 2 连了一条边到点 6,而点 6 不与终点 5 连通。
【数据说明】
对于 30% 的数据,0<n≤10,0 <m≤20;
对于 60% 的数据,0<n≤100,0 <m≤2000;
对于 100% 的数据,0<n≤10,000,0<m≤200,000,0<x,y,s,t≤n,x≠t。
解析:
题解是BFS,而我用的是另一种方法。
如果没有限制一,那么就是一道最短路的板题,其实对于限制一,我们只需要将与出度为0且不是终点的点相连的点标记不能走,然后直接最短路,就可以了。为什么是对的?稍微画图想想你就明白了。
代码:
#include <bits/stdc++.h>
using namespace std;
const int Maxn=10005;
const int Maxm=200005;
const int inf=1e9;
int n,m,size,s,t;
int first[Maxn],First[Maxn],v[Maxn],pre[Maxn],dis[Maxn],to[Maxn],vis[Maxn];
struct shu{int to,next;};
shu edge[Maxm<<1],Edge[Maxm<<1];
inline int get_int()
{
int x=0,f=1;
char c;
for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
if(c=='-') f=-1,c=getchar();
for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
return x*f;
}
inline void build(int x,int y)
{
edge[++size].next=first[x];
first[x]=size;
edge[size].to=y;
Edge[size].next=First[y];
First[y]=size;
Edge[size].to=x;
}
inline void dfs(int point)
{
for(int u=First[point];u;u=Edge[u].next)
{
int to=Edge[u].to;
first[to]=0;
}
}
inline void dijkstra()
{
priority_queue<pair<int,int> >q;
for(int i=1;i<=n;i++) dis[i]=inf;
dis[s]=0,q.push(make_pair(0,s));
while(q.size())
{
int point=q.top().second;
q.pop();if(vis[point]) continue;vis[point]=1;
for(int u=first[point];u;u=edge[u].next)
{
int to=edge[u].to;
if(dis[to] > dis[point] + 1)
{
dis[to]=dis[point]+1;
q.push(make_pair(-dis[to],to));
}
}
}
}
int main()
{
n=get_int(),m=get_int();
for(int i=1;i<=m;i++)
{
int x=get_int(),y=get_int();
build(x,y),to[x]++;
}
s=get_int(),t=get_int();
for(int i=1;i<=n;i++) if(!to[i] && i!=t) dfs(i);
dijkstra();
if(dis[t]==inf) cout<<"-1\n";
else cout<<dis[t]<<"\n";
return 0;
}