【NOIP2009提高组】最优贸易

本文介绍了一种基于有向图和强连通分量的贸易路径优化算法,旨在帮助商人找到在多个城市间进行商品买卖以获取最大利润的路径。算法首先使用Tarjan算法对图进行缩点处理,消除环路,然后进行动态规划,计算从每个城市到终点的最大价格,从而得出最大利润。
摘要由CSDN通过智能技术生成

题目描述

C国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。

C国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。

商人阿龙来到C国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设C国 n 个城市的标号从 1-n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市迈入他最喜欢的商品——水晶球,并在之后经过的另一个城市卖出这个水晶球。用赚取的差价当作旅费。由于阿龙主要是来C国旅游,他决定这个贸易只进行最多一次。当然,在赚不到差价的情况下它就无需进行贸易。

假设C国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行。双向箭头表示这条道路为双向通行。

假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。

阿龙可以选择如下一条线路:1->2->3->5,并在2号城市以 3 的价格买入水晶球,在3号城市以 5 的价格卖出水晶球,赚取的旅费数为2。
阿龙也可以选择如下一条线路:1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。

现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚钱多少旅费。

输入格式

第一行包含 2 个正整数 n 和 m ,中间用一个空格隔开,分别表示城市的数目和道路的数目。
第二行 n 个正整数,每两个正整数之间用一个空格隔开,按标号顺序分别表示这 n 个城市的商品价格。
接下来 m 行,每行有 3 个正整数,x,y,z,每两个整数之间用一个空格隔开。如果 z=1,表示这条道路是城市 x 到城市 y 之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市 y 之间的双向道路。

输出格式

输出文件共 1 行,包含 1 个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出 0 。

样例数据 1

输入

5 5 
4 3 5 6 1 
1 2 1 
1 4 1 
2 3 2 
3 5 1 
4 5 2

输出

5

备注

【数据范围】
    输入数据保证 1 号城市可以到达 n 号城市。
    对于 10% 的数据,1≤n≤6。
    对于 30% 的数据,1≤n≤100。
    对于 50% 的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
    对于 100% 的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市水晶球价格≤100。

 

解析:

       对于50%的数据,显然可以用DP。

       令f[i]表示点i到终点之间的最大价格,于是答案为max\left \{ f[i]-c[i] \right \}

       对于100%的数据,其实50%的数据就已经提示了我们,不过变化在于有了双向边,所以不能直接进行递推,我当时就是卡在这个地方。后来向dalao请教后猛然惊醒,我们可以强制将整个图变成有向图啊!

       怎么强制变成有向图?用Tarjan进行缩点重新建图,这样整个图就没有环了,就可以直接进行递推了。

       因为一个强连通分量中两点的买入卖出顺序可以互换,所以对答案无影响。

 

代码:

#include <bits/stdc++.h>
using namespace std;

const int Maxn=100005;
const int Maxm=500005;
pair<int,int>q;
int n,m,size,cnt,sum,ans,Index,tot;
int f[Maxn],first[Maxn],First[Maxn],c[Maxn];
int low[Maxn],num[Maxn],father[Maxn],vis[Maxn],p[Maxn],maxx[Maxn];
struct shu{int to,next;};
shu edge[Maxm<<1],Edge[Maxm<<1];

inline int get_int()
{
	int x=0,f=1;
	char c;
	for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
	if(c=='-') f=-1,c=getchar();
	for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
	return x*f;
}

inline void build(int x,int y)
{
	edge[++size].next=first[x];
	first[x]=size;
	edge[size].to=y,edge[size];
}

inline void Build(int x,int y)
{
	Edge[++size].next=First[x];
	First[x]=size;
	Edge[size].to=y,Edge[size];
}

inline void tarjan(int point)
{
	low[point]=num[point]=++Index;
	vis[point]=1,p[++tot]=point;
	for(int u=first[point];u;u=edge[u].next)
	{
	  int to=edge[u].to;
	  if(!num[to]) tarjan(to),low[point]=min(low[point],low[to]);
	  else if(vis[to]) low[point]=min(low[point],num[to]);
	}
	if(low[point]==num[point])
	{
	  cnt++;
	  while(1)
	  {
	  	int x=p[tot--];
	  	vis[x]=0,father[x]=cnt,maxx[cnt]=max(maxx[cnt],c[x]);
	  	if(x==point) break;
	  }
	}
}

inline void dfs(int point,int fa)
{
	vis[point]=1;
	for(int u=First[point];u;u=Edge[u].next)
	{
	  int to=Edge[u].to;
	  if(vis[to]) continue;
	  f[to]=max(maxx[to],f[point]);
	  dfs(to,point);
	}
}

int main()
{
	n=get_int(),m=get_int();
	for(int i=1;i<=n;i++) c[i]=get_int();
	for(int i=1;i<=m;i++)
	{
	  int x=get_int(),y=get_int(),z=get_int();
	  build(x,y);
	  if(z==2) build(y,x);
	}
	for(int i=1;i<=n;i++) if(!num[i]) tarjan(i);
	for(int i=1;i<=n;i++)
	  for(int u=first[i];u;u=edge[u].next)
	    if(father[edge[u].to]!=father[i])
		  Build(father[edge[u].to],father[i]);
	f[father[n]]=maxx[father[n]];
	dfs(father[n],0);
	for(int i=1;i<=n;i++) if(vis[father[i]]) ans=max(ans,f[father[i]]-c[i]);
	cout<<ans;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值