3620: 似乎在梦中见过的样子
Time Limit: 15 Sec Memory Limit: 128 MB
Submit: 1361 Solved: 796
Description
“Madoka,不要相信 QB!”伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约.
这是 Modoka 的一个噩梦,也同时是上个轮回中所发生的事.为了使这一次 Madoka 不再与 QB签订契约,Homura 决定在刚到学校的第一天就解决 QB.然而,QB 也是有许多替身的(但在第八话中的剧情显示它也有可能是无限重生的),不过,意志坚定的 Homura 是不会放弃的——她决定
消灭所有可能是 QB 的东西.现在,她已感受到附近的状态,并且把它转化为一个长度为 n 的字符串交给了学 OI 的你.
现在你从她的话中知道 , 所有形似于 A+B+A 的字串都是 QB 或它的替身 , 且len(A)>=k,len(B)>=1 (位置不同其他性质相同的子串算不同子串,位置相同但拆分不同的子串算同一子串),然后你必须尽快告诉 Homura 这个答案——QB 以及它的替身的数量.
Input
第一行一个字符串,第二行一个数 k
Output
仅一行一个数 ans,表示 QB 以及它的替身的数量
Sample Input
【样例输入 1】
aaaaa
1
【样例输入 2】
abcabcabc
2
Sample Output
【样例输出 1】
6
【样例输出 2】
8
HINT
对于 100%的数据:n<=15000 , k<=100,且字符集为所有小写字母
解析:
竟然能过。。。
首先因为是ABA的形式,我们可以运用KMP中的next数组。固定左端点,枚举右端点,然后随意地卡卡常就OK了,具体见代码。
细节有点毒,要仔细想好再动手!
代码:
#include <bits/stdc++.h>
using namespace std;
const int Max=15005;
int n,k,ans;
int first[Max];
char ch[Max];
inline void calc(int l)
{
for(register int i=l-1;i<=n;++i) first[i]=l-1;
for(register int i=l+1,j=l-1;i<=n;++i)
{
while(j!=l-1&&ch[j+1]!=ch[i]) j=first[j];
if(ch[j+1]==ch[i]) ++j;
first[i]=j;
}
}
inline void solve(int s)
{
calc(s);
for(register int i=s+2*k;i<=n;++i)
{
int pos=i;
while(pos!=s-1&&2*(pos-s+1)>=i-s+1) pos=first[pos];
if(pos-s+1>=k) ans++;
}
}
int main()
{
scanf("%s%d",ch+1,&k),n=strlen(ch+1);
for(register int i=1;i+2*k<=n;++i) solve(i);
cout<<ans;
return 0;
}