题目:Valid Sets
题意:
给出一棵树,求这棵树的满足最大点与最小点之差小于d的连通子图的个数。
解析:
计数类DP+树形DP。
由于n只有2000,所以可以枚举每个点作为根且是最大权值进行DFS,遍历子节点根据乘法原理每个子节点分可选可不选。
但是如果节点权值相同会有重复情况,这时候规定这时候子节点编号必须小于或大于根节点编号才能记录答案就不会重复。
代码:
#include <bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
const int Max=2010;
int n,m,size,d;
long long ans,f[Max];
int first[Max],num[Max];
struct shu{int to,next;}edge[Max<<1];
inline void build(int x,int y)
{
edge[++size].next=first[x],first[x]=size,edge[size].to=y;
edge[++size].next=first[y],first[y]=size,edge[size].to=x;
}
inline void dfs(int p,int fa,int id)
{
f[p]=1;
for(int u=first[p];u;u=edge[u].next)
{
int to=edge[u].to;
if(to==fa||num[to]>num[id]||(num[to]==num[id]&&id<to)||num[id]-num[to]>d) continue;
dfs(to,p,id);
f[p]*=f[to]+1;
if(f[p]>=mod) f[p]%=mod;
}
}
int main()
{
scanf("%d%d",&d,&n);
for(int i=1;i<=n;i++) scanf("%d",&num[i]);
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y),build(x,y);
}
for(int i=1;i<=n;i++)
{
memset(f,0,sizeof(f));
dfs(i,0,i);
ans+=f[i];
if(ans>=mod) ans%=mod;
}
cout<<ans;
return 0;
}