C++面试之动态规划 -- 最长递增子序列

在这个示例中,lengthOfLIS 函数使用动态规划来找到最长升序子序列的长度。它维护一个 dp 数组,其中 dp[i] 表示以第 i 个元素结尾的最长升序子序列的长度。通过在数组中遍历元素,比较当前元素与之前元素的大小,不断更新 dp 数组,最终得到最长升序子序列的长度。

对于给定的示例数组 {10, 22, 9, 33, 21, 50, 41, 60, 80},最长升序子序列是 {10, 22, 33, 50, 60, 80},其长度为 6。

#include <iostream>
#include <vector>

int lengthOfLIS(std::vector<int>& nums) {
    int n = nums.size();
    if (n == 0) {
        return 0;
    }

    std::vector<int> dp(n, 1);  // dp[i] 表示以第i个元素结尾的最长升序子序列的长度

    int maxLength = 1;  // 记录最长升序子序列的长度

    for (int i = 1; i < n; i++) {
        for (int j = 0; j < i; j++) {
            if (nums[i] > nums[j]) {
                dp[i] = std::max(dp[i], dp[j] + 1);
            }
        }
        maxLength = std::max(maxLength, dp[i]);
    }

    return maxLength;
}

int main() {
    std::vector<int> nums = {10, 22, 9, 33, 21, 50, 41, 60, 80};
    int result = lengthOfLIS(nums);
    std::cout << "Length of Longest Increasing Subsequence: " << result << std::endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值