自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 资源 (1)
  • 收藏
  • 关注

原创 (RAG)为什么需要 RAG:LLM 的局限性

介绍了llm存在痛点,对应的分析了rag的相关优势

2025-07-23 13:35:38 298

原创 RAG 评估指标:Retrieval、Generation 与端到端质量衡量

RAG(检索增强生成)不仅要回答“生成得好不好”,还要回答“检索得准不准”。任一环节掉链子,最终答案都会失真。因此业界常将 检索器(R) 与 生成器(G) 分别度量,再用端到端指标把关整体体验。

2025-07-23 09:14:52 684

原创 vLLM 原理深度解析(PagedAttention , Continuous Batching等)、vLLM代码Qwen实战

对vLLM 原理详细解析,包括PagedAttention , Continuous Batching等模块的解读,并附录了vLLM代码Qwen实战案例。

2025-07-14 16:45:31 952

原创 LoRA 原理图文详解、基于 ms-swift 的 Qwen 系列模型轻量级LoRA微调实战

通过图文描述详细介绍了LoRA的原理,深入浅出易于理解。在介绍原理的基础上,基于ms-swift对qwen2-7b的LoRA微调案例进行了介绍。

2025-07-14 14:56:44 940

原创 思维链COT(Chain-of-Thought)全解析:原理、范式、写法与实战案例。

本文系统解析思维链(Chain-of-Thought, CoT):将“显式展示推理步骤”作为提示与训练范式,解释其通过减少跳步错误、对齐解释性语料分布、便于验证与工具插入来显著提升逻辑/数学/多步规划能力的机理;梳理 Zero-shot、Few-shot、自一致(Self-Consistency)、ReAct、Tree-of-Thought 等主流扩展;

2025-07-14 13:55:09 1795

原创 【手把手从零实现】Qwen2.5-VL:环境配置/功能实验(图片识别理解、目标检测、文字OCR、文档解析、视频理解)/模型微调(MS-Swift 和 LLaMA-Factory)

Qwen2.5-VL(阿里通义千问最新视觉语言家族)在 图像理解、检测框、OCR、表格解析、视频理解 等方面给出“开箱即用”的接口,3B 模型就很能打。本博客介绍Qwen2.5-vl的使用和微调等。

2025-07-14 11:13:44 3436 1

原创 yolov12介绍(Area Attention,R‑ELAN,FlashAttention‑Driven,DFL v2详解)

介绍yolov12模型,解析yolov12的核心模块:Area Attention,R‑ELAN,FlashAttention‑Driven,DFL v2等等。

2025-07-11 13:36:27 683

原创 Ultralytics 家族(yolov5/yolov8/yolov11)介绍之三:yolov11详解 (yolov11与yolov8对比介绍,详解C2PSA模块和C3k2模块)

YOLO11 是 Ultralytics 于 2024 年下半年发布的最新一代多任务视觉模型。它在保持 YOLOv8 基本架构的同时,通过 C3k2 轻量残块、C2PSA 空间注意力 等新组件,实现更高map和更快推理速度。

2025-07-11 13:35:41 761

原创 Ultralytics 家族(yolov5/yolov8/yolov11)介绍之二:yolov8详解

备注:准备梳理 Ultralytics 家族的 YOLOv5 → YOLOv8 → YOLO11的演进脉络,本文主要介绍yolov8,同时对yolov5和yolov8两个版本进行对比分析。

2025-07-11 13:34:44 915

原创 Ultralytics 家族(yolov5/yolov8/yolov11)介绍之一:yolov5详解(后续会对比介绍v8和v11)

准备梳理 Ultralytics 家族的 YOLOv5 → YOLOv8 → YOLO11的演进脉络,首先介绍yolov5。

2025-07-11 13:33:40 1094

原创 目标检测四:Transformer 检测模型详解(DETR 系列)

基于 Transformer 的检测模型,以 DETR(Detection Transformer) 为起点,梳理其核心思想、代表改进(Deformable/Conditional/DAB/DN/Anchor/Group/RT-DETR 等)以及工程实践。

2025-07-11 13:32:32 853

原创 目标检测三:YOLO 系列纵览(v1–v13)

yolo系列:从yolov1到yolov13。

2025-07-11 13:31:08 762

原创 目标检测二:RCNN 系列详解

RCNN系列详细解读

2025-07-11 13:27:57 195

原创 目标检测一:“它是什么”,“它能做什么”

本文系统梳理目标检测:定义其为“分类+定位”的组合任务,解释与分类、语义/实例分割的差异;说明典型输出格式与坐标规范;概述主流数据集与标注方式;讲解IoU、mAP等评估指标及速度要求;按时代回顾从传统特征、两阶段/单阶段、Anchor‑Free到Transformer与多模态大模型的技术演进;从阶段、锚框、骨干、监督信号与场景五个维度给出算法流派全景;最后指出长尾、小目标、遮挡、实时性、开放词汇与端到端等挑战与趋势,并为后续RCNN、YOLO、DETR专题做铺垫。

2025-07-11 13:27:08 201

原创 多模态大模型:CLIP、ALBEF、BLIP、BLIP-2、GLIP、GroundingDINO

对CLIP、ALBEF、BLIP、BLIP-2、GLIP、GroundingDINO等模型进行概括性介绍

2023-12-11 19:35:34 969

原创 OCR 分割流派小模型 :PSENet、PAN、DBNet

本文聚焦于“分割(Segmentation-based)”思路的场景文本检测,主要介绍psenet、panet、dbnet等模型。

2021-09-26 11:18:21 267

原创 (附完整python源码)基于tensorflow、opencv的入门案例_发票识别三:发票数据集制作和cnn网络训练

1.字符分割2.字符识别

2018-05-14 20:17:29 12099 20

原创 (附完整python源码)基于tensorflow、opencv的入门案例_发票识别二:字符分割

11

2018-05-14 20:16:27 7066 8

原创 (附完整python源码)基于tensorflow、opencv的入门案例_发票识别一:关键区域定位

分为两篇博客:发票识别一、发票识别二1.发票识别一:1.1从一张发票照片精确“发票号码”、“发票代码”所在区域2.发票识别二:    将发票代码分割成单个数字,然后用神经网络进行逐个识别...

2018-05-11 21:26:59 25699 6

原创 传统cv目标检测---rcnn系列---yolov1和v2---ssd

本文梳理目标检测算法发展脉络,从传统计算机视觉时期的滑动窗口方法,过渡到深度学习时代的重要演进。内容涵盖R-CNN系列模型带来的突破,以及随后提出的高效框架如SSD与Yolo系列。

2018-05-10 17:58:33 4191

原创 (python源码)小案例:归一化_零均值的作用

归一化_零均值的作用1.通过一个简单的小案例讲解下,为什么归一化后,训练速度会增加。2. 案例很简单,将蓝色的小正方行通过旋转、缩放后变换为红色正方形。变量(Variable):旋转角度angle_、缩放系数scale_。3.直接上图,说出迭代的结论3.1 下面两幅图为“变量与loss的关系图”,一系列的黑点代表变量的迭代过程,一个红点代表最优loss位置。3.2 该图表示“没有进行归一化”,  ...

2018-04-28 21:23:26 3832

原创 (C++源码,详细注解)pso粒子群算法的调参技巧及改进方法

粒子群算法的调参技巧及改进方法C++源码实现1 基本粒子群算法简单介绍1.1 粒子群算法( Particle Swarm Optimization, PSO)是一种典型的群体智能算法。最早是由美国心理学家Eberhart和电气工程师Kennedy于1995年提出,是一种模拟鸟类群体觅食行为的仿生智能计算方法。鸟群在整个搜寻的过程中,通过相互传递各自的信息,让其他的鸟知道自己的位置,同时也将最优解的...

2018-04-27 14:42:34 7088 6

原创 (python源码,详细注解 )多目标粒子群算法 mopso

1 本代码功能用多目标粒子群算法(mopso)寻找pareto最优解集2 算法介绍2.1 简单步骤:(1)初始化群体粒子群的位置和速度,计算适应值(2)根据pareto支配原则,计算得到Archive 集(存放当前的非劣解)(3)计算pbest(4)计算Archive集中的拥挤度(5)在Archive集选择gbest(6)更新粒子的速度、位置、适应值(7)更新Archive集(还要注意防止溢出)(...

2018-04-07 18:51:34 50865 72

mopso多目标粒子群算法 python源码

mopso多目标粒子群算法 python源码 粒子群速度位置更新 pareto最优解集 外部存档 拥挤度计算

2018-04-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除