A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
采用动态规划的方法,每次只能向下或者向右,所以每个格子的唯一路径数量为左边格子和上边格子的数量之和。
初始状态:dp[0][0] = 0; if(m == 1 || n == 1) return 1; dp[0][1] = 1; dp[1][0] = 1;
状态转移:dp[i][j] += dp[i-1][j] + dp[i][j-1];
public class num62 {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
dp[0][0] = 0;
if(m == 1 || n == 1) return 1;
dp[0][1] = 1;
dp[1][0] = 1;
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
if(i == 0 && j!=0){
dp[i][j] += dp[i][j-1];
}else if(j == 0 && i!=0){
dp[i][j] += dp[i-1][j];
}else if(j != 0 && i != 0){
dp[i][j] += dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
public static void main(String[] args) {
int m=1, n=2;
num62 s = new num62();
System.out.println(s.uniquePaths(m, n));
}
}