【机器学习基石笔记八】-----Noise and Eroor

上节课接触了VC Dimension,如果hypothesis set的d_{vc}有限,并且有足够多的data,同时演算法能够找到一个好的hypothesis使得E_{in}\approx 0,这样可以说机器学习是可行的。那么在数据有noise的情况下是否能够进行机器学习?

Noise and Probablistic target

之前对VC Dimension的推导是在没有noise的情况下,如果数据本身存在noise,怎样放宽VC Bound的假设?

data set一般是存在noise的,其noise一般由三种:

  • 人为因素将good分为bad,或者将bad分为good,noise in y;
  • 同一特征的数据被分为不同的类别;
  • 数据样本不精确;

VC Bound在有noise的情况下能否work?

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值