前言
pytorch框架,gym环境
一、pytorch框架的seed
import random
import numpy as np
import torch
def seed_everything(seed):
random.seed(seed) # Python内置随机数
np.random.seed(seed) # NumPy随机数
torch.manual_seed(seed) # PyTorch CPU种子
if torch.cuda.is_available():
torch.cuda.manual_seed(seed) # 当前GPU种子
torch.cuda.manual_seed_all(seed) # 所有GPU种子
torch.backends.cudnn.deterministic = True # 启用确定性算法
torch.backends.cudnn.benchmark = False # 关闭自动优化[1,2,6](@ref)
二、gym环境seed
env = gym.make("CartPole-v1")
env.seed(seed) # 固定环境内部随机性(如初始状态、动态噪声)[3,5](@ref)
注意
即使固定所有种子,以下情况仍可能导致不可复现:
- GPU并行计算
PyTorch的原子操作(如atomicAdd)和CUDA底层并行机制引入不确定性,需改用CPU或容忍部分随机性。 - 第三方库依赖
若代码依赖未固定种子的外部库(如OpenAI Gym的某些扩展环境),需检查其随机源