强化学习训练时的seed


前言

pytorch框架,gym环境


一、pytorch框架的seed

import random
import numpy as np
import torch

def seed_everything(seed):
    random.seed(seed)               # Python内置随机数
    np.random.seed(seed)             # NumPy随机数
    torch.manual_seed(seed)         # PyTorch CPU种子
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)       # 当前GPU种子
        torch.cuda.manual_seed_all(seed)   # 所有GPU种子
        torch.backends.cudnn.deterministic = True  # 启用确定性算法
        torch.backends.cudnn.benchmark = False     # 关闭自动优化[1,2,6](@ref)

二、gym环境seed

env = gym.make("CartPole-v1")
env.seed(seed)  # 固定环境内部随机性(如初始状态、动态噪声)[3,5](@ref)

注意

即使固定所有种子,以下情况仍可能导致不可复现:

  1. GPU并行计算
    PyTorch的原子操作(如atomicAdd)和CUDA底层并行机制引入不确定性,需改用CPU或容忍部分随机性。
  2. ​第三方库依赖
    若代码依赖未固定种子的外部库(如OpenAI Gym的某些扩展环境),需检查其随机源
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值