人工智能(AI)算法是构建智能系统的核心,而理解和掌握这些经典算法的实现原理是成为一名优秀 AI 工程师的必备技能。在这篇教程中,我们将使用 Python 逐步实现三种经典的人工智能算法:线性回归、逻辑回归 和 决策树。通过详细讲解每个算法的原理、代码实现和性能评估,帮助读者深入理解这些算法的应用,尤其适合初学者以及希望巩固基础的开发者。
1. 线性回归(Linear Regression)
1.1 算法原理
线性回归是最基本的回归分析方法之一,它用于建立一个变量(因变量)与一个或多个自变量之间的线性关系。公式如下:
1.2 代码实现
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 生成模拟数据
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100