随着物联网(IoT)和工业自动化的快速发展,边缘计算成为了提升实时性和降低延迟的关键技术。特别是在工业应用中,AI 推理的速度和准确性直接影响生产效率和系统的稳定性。在这篇文章中,我们将介绍如何利用 K3s 和 TensorRT 实现毫秒级的 AI 推理,同时分享一些工业级案例和避免常见坑的技巧。
一、边缘计算与 AI 推理
边缘计算是指将计算和数据处理从云端转移到网络边缘的计算架构,目的是减少数据传输的延迟和带宽需求。AI 推理在边缘计算中的应用可以让设备快速做出决策,如实时监控、智能制造、视频分析等场景。
然而,边缘设备通常存在资源受限(计算能力、内存、存储等)的挑战,因此在边缘设备上运行高效的 AI 推理算法是关键。为此,我们可以利用轻量级的容器化管理系统 K3s 和高效的推理引擎 TensorRT 来优化推理性能。
二、K3s 简介
K3s 是一个轻量级的 Kubernetes(K8s)版本,专门为边缘计算和 IoT 设备设计。K3s 提