一、引言
随着自然语言处理(NLP)的迅猛发展,词嵌入(Word Embedding)已经成为了深度学习中处理文本数据的一个核心概念。词嵌入方法通过将每个词表示为一个低维向量,使得计算机能够理解词与词之间的关系。传统的词嵌入技术,如 Word2Vec 和 GloVe 等,生成的词嵌入是静态的,这意味着每个词的表示在任何上下文中都是一样的。然而,随着多义词和上下文的复杂性,静态词嵌入方法逐渐无法满足需求。
为了克服这一问题,基于 动态词嵌入 的技术应运而生。动态词嵌入能够根据上下文信息动态地调整词的向量表示。基于预训练语言模型(如 BERT、GPT)的动态词嵌入方法,已经成为当前NLP研究和应用中的重要技术。
本文将介绍如何使用 TensorFlow 实现基于语言模型的动态词嵌入技术,深入探讨动态词嵌入的核心原理及其实现方式。
二、词嵌入与动态词嵌入的概念
2.1 词嵌入(Word Embedding)
词嵌入是将词语转换为固定长度的向量,旨在捕捉词语的语义信息。常见的词嵌入技术包括 Word2Vec、GloVe 等。这些方法通过大规模文本数据学习词语的向量表示,保证语义相似的词有相近的向量表示。
例如,Word2Vec 通过两种模型(CBOW和Skip-gram)来训练词嵌入,生成固定的向量表示,每个词都有一个固定的词向量。
然而,静态词嵌入的缺点是无法处理词的多义性。例如,单词 “bank” 在