随着工业自动化和智能制造的发展,设备维护已经从传统的定期维护和故障后维修模式向更加智能化的预测性维护(Predictive Maintenance)转变。预测性维护通过提前预测设备故障,最大程度地减少停机时间、降低维护成本并提高生产效率。随着人工智能(AI)、物联网(IoT)以及数字孪生(Digital Twin)技术的不断进步,构建一个基于AIoT和数字孪生的预测性维护平台成为提升工业设备管理水平和智能化程度的关键。
本文将介绍一种基于AIoT与数字孪生技术的工业设备预测性维护平台的设计与实现,该平台通过传感器数据实时监测设备运行状态,并结合深度学习算法预测设备故障,利用数字孪生模型优化维护策略,从而实现高效、精确的预测性维护。
系统架构
1. 数据采集层(AIoT)
预测性维护平台的基础是通过AIoT技术实时采集设备的运行数据。物联网设备的传感器通过检测设备的各种物理量(如温度、压力、振动、转速、功率等),帮助系统实时了解设备的健康状况。主要的传感器包括:
-
温度传感器:监测设备的工作温度,以便检测是否有过热情况。
-
振动传感器:监测设备的振动情况,早期振动异常往往是机械故障的前兆。