大模型核心概念深度解析:LLM、Prompt工程、AI Agent与RAG技术全方位剖析

人工智能的快速发展催生了大量的创新技术与应用,其中大模型(LLM)、Prompt工程、AI Agent、RAG(Retrieval-Augmented Generation)等概念成为了现代AI研究与开发的热议话题。这些概念的兴起,不仅推动了自然语言处理(NLP)、智能对话、自动推理等领域的突破,还开创了多个商业和科研领域的全新机遇。

本文将深入剖析这些概念的工作原理、技术细节与相互关系,帮助开发者与AI从业者更好地理解它们如何在现代AI技术的框架中协同工作、推动技术进步。


1. LLM(Large Language Models):从基础到未来的技术演进

1.1 LLM的崛起与技术突破

大语言模型(LLM)是一种基于深度学习的自然语言处理模型,尤其强调模型规模的扩展。与传统模型相比,LLM通过海量数据的训练,能够理解和生成具有复杂语义关系的文本。

  • 技术背景:LLM的出现基于Transformer架构的突破,特别是在自注意力机制的基础上,模型能够更好地捕捉上下文信息,克服了之前RNN(循环神经网络)在长文本处理上的局限性。
  • 发展历程:从最初的GPT-2到如今的GPT-4、ChatGPT等,LLM的参数规模越来越大,能力也逐渐得到提升,能够在更多的应用场景中展现出前所未有的能力。
1.2 Transform
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

威哥说编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值