人工智能的快速发展催生了大量的创新技术与应用,其中大模型(LLM)、Prompt工程、AI Agent、RAG(Retrieval-Augmented Generation)等概念成为了现代AI研究与开发的热议话题。这些概念的兴起,不仅推动了自然语言处理(NLP)、智能对话、自动推理等领域的突破,还开创了多个商业和科研领域的全新机遇。
本文将深入剖析这些概念的工作原理、技术细节与相互关系,帮助开发者与AI从业者更好地理解它们如何在现代AI技术的框架中协同工作、推动技术进步。
1. LLM(Large Language Models):从基础到未来的技术演进
1.1 LLM的崛起与技术突破
大语言模型(LLM)是一种基于深度学习的自然语言处理模型,尤其强调模型规模的扩展。与传统模型相比,LLM通过海量数据的训练,能够理解和生成具有复杂语义关系的文本。
- 技术背景:LLM的出现基于Transformer架构的突破,特别是在自注意力机制的基础上,模型能够更好地捕捉上下文信息,克服了之前RNN(循环神经网络)在长文本处理上的局限性。
- 发展历程:从最初的GPT-2到如今的GPT-4、ChatGPT等,LLM的参数规模越来越大,能力也逐渐得到提升,能够在更多的应用场景中展现出前所未有的能力。