引言:跨模态AI的未来
人工智能的应用正在进入一个全新的阶段,跨模态(Multimodal)技术已经成为未来AI发展的核心趋势。在这个时代,AI不仅能够理解单一类型的数据(如语音、图像或文本),还能够在不同数据类型之间建立联系,推动从文字到图像、从语音到语音等多种创新应用。
今天,我们将介绍如何在GPU环境中搭建两个具有代表性的跨模态模型:So-VITS-SVC语音合成模型和Stable Diffusion文本生成图像模型。这两个模型分别在语音和图像生成领域拥有显著的应用前景,并且它们的结合可能会开启更多创意与自动化的应用场景。
第一部分:搭建So-VITS-SVC语音合成模型
So-VITS-SVC(Speech-to-Voice-Identity Translation with Speech Vocoder)是一种能够将源语音转换为目标语音风格的深度学习模型。其原理是通过一种称为“变声器”的技术来实现声音的风格转换,甚至可以通过少量的目标样本来对目标语音进行个性化调整。
1.1 环境准备与依赖安装
在开始之前,确保你拥有一台具备NVIDIA GPU的计算机,推荐使用RTX系列显卡来加速训练过程。首先,安装必需的依赖:
-
操作系统:Ubuntu 20.04 或更高版本
-
Python版本:Python 3.8 及以上
-
CUDA版本:CUDA 11.1 及以上
-
必要的Python库:
torch
(用于深度学习计算)librosa
(用于音频处理)tqdm
(用于进度条显示)numpy
(数据处理)matplotlib
(可视化工具)
可以通过以下命令安装相关依赖:
pip install