牛顿法求平方根java实现

本文介绍了一种求解平方根的有效方法——牛顿法。通过迭代计算,牛顿法可以快速逼近目标值,实现对任意正数n的平方根求解。文中详细解释了迭代公式的推导过程,并提供了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

牛顿法是一种将非线性方程线性化,用线性方程的解逼近非线性方程的解的求解方法。

image.png

选取一个接近零点的x0,计算f(x0)和切线斜率f’(x0),切线方程为y=f(x0)+f’(x0)(x-x0),将切线与x轴交点的横坐标记为x1,x1比x0更接近方程的解,利用x1开始下一轮迭代,可得迭代公式:
image.png

具体到求n的平方根,那么f(x)=x^2-n,f’(x)=2x,迭代公式为:
image.png

具体代码:

/**
     * 牛顿法求n的平方根
     * @param n
     * @return
     */
    public static double getResult(int n){
        double result=1.0;
        double temp=result-(result*result-n)/(2*result);

        while(Math.abs(result-temp)>0.0000001){
            result=temp;
            temp=result-(result*result-n)/(2*result);
        }
        return result;
    }
### 牛顿迭代法计算平方根的时间复杂度分析 牛顿迭代法是一种高效的数值方法,用于解方程的近似根。对于平方根问题,该算法通过不断逼近真实值来获得更精确的结果。 #### 收敛性质 牛顿迭代法具有二次收敛特性,在接近真值时能够快速减少误差。这意味着每次迭代后的精度会显著提高。当初始估计合理时,通常只需要几次迭代就能达到较高的精度[^1]。 #### 时间复杂度评估 时间复杂度主要取决于两个方面: - **单次迭代成本**:每轮迭代涉及加减乘除运算以及一次条件判断操作,这些基本算术运算是常量时间内完成的操作。 - **迭代次数**:理论上讲,如果起始点选择恰当,则经过有限步即可使结果满足给定精度要。具体来说,由于其具备二阶收敛速度,因此所需迭代次数相对较少[^2]。 综合考虑上述因素,牛顿迭代法平方根的整体时间复杂度大约为 \(O(\log \epsilon^{-1})\) ,其中 \(\epsilon\) 表示所需的绝对或相对误差限。这表明随着期望精度增加(即 \(\epsilon\) 减小),额外消耗的时间增长较为缓慢[^3]。 ```java public class Main { /** 牛顿迭代法: O(log(ε^-1)) */ public static int mySqrt(int num) { if (num == 0) { return 0; } // 确定迭代变量初始值 double x0 = num; double xn = (x0 + num / x0) / 2; // 设定终止条件以控制精度 while (Math.abs(xn - x0) > 0.01) { x0 = xn; // 迭代公式 xn = (x0 + num / x0) / 2; } return (int) xn; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值